

AWS Terraform Workshop

Build AWS Resources with Infrastructure as Code

1 / 83

Introductions

Your Name
Job Title
Automation Experience
Favorite Text Editor

Copyright © 2021 HashiCorp 1 / 83

The Slide Deck

Follow along on your own computer at this link:

https://git.io/JerH6

Copyright © 2021 HashiCorp 2 / 83

https://git.io/JerH6

Table of Contents

1. Intro to Terraform & Demo
2. Terraform Basics

👩‍🔬 Lab - Setup and Basic Usage
3. Terraform In Action: plan, apply, destroy
4. Organizing Your Terraform Code

🧪 Lab - Terraform in Action

5. Provision and Configure AWS Instances

🔬 Lab - Provisioning with Terraform

6. Manage and Change Infrastructure State

7. Terraform Cloud

⚗️ Lab - Terraform Remote State

Copyright © 2021 HashiCorp 3 / 83

Copyright © 2021 HashiCorp

Chapter 1
Introduction to Terraform

4 / 83

How to Provision an AWS Instance

Let's look at a few different ways you could provision a new AWS Instance.
Before we start we'll need to gather some basic information including (but
not limited to):

Instance Name
Operating System (Image)
VM Size
Geographical Location (Region)
Security Groups

Copyright © 2021 HashiCorp 5 / 83

Method 1: AWS Console (GUI)

Copyright © 2021 HashiCorp 6 / 83

Method 1: AWS Portal (GUI)

Copyright © 2021 HashiCorp 7 / 83

Method 2: CloudFormation Templates

CloudFormation Templates provide a consistent and reliable way to provision AWS
resources. JSON is easy for computers to read, but can be challenging for humans to edit
and troubleshoot.

{

 "AWSTemplateFormatVersion" : "2010-09-09",

 "Description" : "AWS CloudFormation Sample Template EC2InstanceWithSecurityGroupSample: Crea

 "Parameters" : {

 "KeyName": {

 "Description" : "Name of an existing EC2 KeyPair to enable SSH access to the instance",

 "Type": "AWS::EC2::KeyPair::KeyName",

 "ConstraintDescription" : "must be the name of an existing EC2 KeyPair."

 },

 }

}

Copyright © 2021 HashiCorp 8 / 83

Method 3: Provision with Terraform

resource aws_instance "web" {

 ami = data.aws_ami.ubuntu.id

 instance_type = "t2.micro"

 tags = {

 Name = "HelloWorld"

 }

}

Example Terraform code for building an AWS instance.

Copyright © 2021 HashiCorp 9 / 83

What is Terraform?

resource aws_instance "catapp" {

 ami = data.aws_ami.ubuntu.id

 instance_type = var.instance_type

 tags = {

 Name = "${var.prefix}-meow"

 }

Executable Documentation
Human and machine readable
Easy to learn
Test, share, re-use, automate
Works on all major cloud providers

Copyright © 2021 HashiCorp 10 / 83

What is Infrastructure as Code?

Infrastructure as Code (IaC) is the process of managing and provisioning
cloud infrastructure with machine-readable definition files.

Think of it as executable documentation.

Copyright © 2021 HashiCorp 11 / 83

Infrastructure as Code Allows Us To...

Copyright © 2021 HashiCorp 12 / 83

Infrastructure as Code Allows Us To...

Provide a codified workflow to create infrastructure

Copyright © 2021 HashiCorp 13 / 83

Infrastructure as Code Allows Us To...

Provide a codified workflow to create infrastructure
Change and update existing infrastructure

Copyright © 2021 HashiCorp 14 / 83

Infrastructure as Code Allows Us To...

Provide a codified workflow to create infrastructure
Change and update existing infrastructure
Safely test changes using terraform plan in dry run mode

Copyright © 2021 HashiCorp 15 / 83

Infrastructure as Code Allows Us To...

Provide a codified workflow to create infrastructure
Change and update existing infrastructure
Safely test changes using terraform plan in dry run mode

Integrate with application code workflows (Git, CI/CD tools)

Copyright © 2021 HashiCorp 16 / 83

Infrastructure as Code Allows Us To...

Provide a codified workflow to create infrastructure
Change and update existing infrastructure
Safely test changes using terraform plan in dry run mode

Integrate with application code workflows (Git, CI/CD tools)
Provide reusable modules for easy sharing and collaboration

Copyright © 2021 HashiCorp 17 / 83

Infrastructure as Code Allows Us To...

Provide a codified workflow to create infrastructure
Change and update existing infrastructure
Safely test changes using terraform plan in dry run mode

Integrate with application code workflows (Git, CI/CD tools)
Provide reusable modules for easy sharing and collaboration
Enforce security policy and organizational standards

Copyright © 2021 HashiCorp 18 / 83

Infrastructure as Code Allows Us To...

Provide a codified workflow to create infrastructure
Change and update existing infrastructure
Safely test changes using terraform plan in dry run mode

Integrate with application code workflows (Git, CI/CD tools)
Provide reusable modules for easy sharing and collaboration
Enforce security policy and organizational standards
Enable collaboration between different teams

Copyright © 2021 HashiCorp 19 / 83

Other Infrastructure as Code Tools

These tools work well for configuring the operating system and
application. They are not purpose-built for provisioning cloud
infrastructure and platform services.

Copyright © 2021 HashiCorp 20 / 83

Native Cloud Provisioning Tools

Each cloud has its own YAML or JSON based provisioning tool.

Terraform can be used across all major cloud providers and VM
hypervisors.

Copyright © 2021 HashiCorp 21 / 83

Copyright © 2021 HashiCorp 22 / 83

Terraform vs. JSON

CFT JSON:

"name": "{ "Fn::Join" : ["-", [PilotServerName, vm]] }",

Terraform:

name = "${var.PilotServerName}-vm"

Terraform code (HCL) is easy to learn and easy to read. It is also 50-70%
more compact than an equivalent JSON configuration.

Copyright © 2021 HashiCorp 23 / 83

Why Terraform?

https://blog.1password.com/terraforming-1password/

Copyright © 2021 HashiCorp 24 / 83

https://blog.1password.com/terraforming-1password/

Why Terraform on AWS?

Supports multi-cloud & hybrid infrastructure

Copyright © 2021 HashiCorp 25 / 83

Why Terraform on AWS?

Supports multi-cloud & hybrid infrastructure
Migrate from other cloud providers

Copyright © 2021 HashiCorp 26 / 83

Why Terraform on AWS?

Supports multi-cloud & hybrid infrastructure
Migrate from other cloud providers
Increase provisioning speed

Copyright © 2021 HashiCorp 27 / 83

Why Terraform on AWS?

Supports multi-cloud & hybrid infrastructure
Migrate from other cloud providers
Increase provisioning speed
Improve efficiency

Copyright © 2021 HashiCorp 28 / 83

Why Terraform on AWS?

Supports multi-cloud & hybrid infrastructure
Migrate from other cloud providers
Increase provisioning speed
Improve efficiency
Reduce risk

Copyright © 2021 HashiCorp 29 / 83

Copyright © 2021 HashiCorp

Live Demo

30 / 83

Copyright © 2021 HashiCorp

Chapter 2
Terraform Basics

31 / 83

What is Terraform?

Terraform is an open source
provisioning tool.

It ships as a single binary which is
written in Go. Terraform is cross
platform and can run on Linux,
Windows, or MacOS.

Installing terraform is easy. You
simply download a zip file, unzip it,
and run it.

Copyright © 2021 HashiCorp 32 / 83

Terraform is a command line tool.

Terraform commands are either
typed in manually or run
automatically from a script.

The commands are the same
whether you are on Linux or
Windows or MacOS.

Terraform has subcommands that
perform different actions.

Basic Terraform Commands

terraform version

terraform help

terraform init

terraform plan

terraform apply

terraform destroy

Copyright © 2021 HashiCorp

Terraform Command Line

33 / 83

Terraform Help

$ terraform help

Usage: terraform [-version] [-help] <command> [args]

...

Common commands:

 apply Builds or changes infrastructure

 console Interactive console for Terraform interpolations

 destroy Destroy Terraform-managed infrastructure

 env Workspace management

 fmt Rewrites config files to canonical format

 graph Create a visual graph of Terraform resources

Type terraform subcommand help to view help on a particular

subcommand.

Copyright © 2021 HashiCorp 34 / 83

Terraform Code

resource aws_vpc "main" {

 cidr_block = "10.0.0.0/16"

 instance_tenancy = "dedicated"

}

Terraform code is based on the HCL2 toolkit. HCL stands for HashiCorp
Configuration Language.

Terraform code, or simply terraform is a declarative language that is
specifically designed for provisioning infrastructure on any cloud or
platform.

Copyright © 2021 HashiCorp 35 / 83

https://github.com/hashicorp/hcl

Terraform Comments

Line Comments begin with an octothorpe*, or pound symbol: #

This is a line comment.

Block comments are contained between /* and */ symbols.

/* This is a block comment.

Block comments can span multiple lines.

The comment ends with this symbol: */

* Yes, it really is called an octothorpe.

Copyright © 2021 HashiCorp 36 / 83

https://www.merriam-webster.com/dictionary/octothorpe

Terraform Workspaces

A terraform workspace is simply a folder or directory that contains
terraform code.

Terraform files always end in either a *.tf or *.tfvars extension.

Most terraform workspaces contain a minimum of three files:

main.tf - Most of your functional code will go here.

variables.tf - This file is for storing variables.

outputs.tf - Define what is shown at the end of a terraform run.

Copyright © 2021 HashiCorp 37 / 83

Terraform Init

$ terraform init

Initializing provider plugins...

- Checking for available provider plugins...

- Downloading plugin for provider "aws" (hashicorp/aws) 2.35.0...

...

 provider.aws: version = "~> 2.35"

Terraform has been successfully initialized!

Terraform fetches any required providers and modules and stores them in
the .terraform directory. If you add, change or update your modules or
providers you will need to run init again.

Copyright © 2021 HashiCorp 38 / 83

Terraform Plan

$ terraform plan

An execution plan has been generated and is shown below.

Terraform will perform the following actions:

 # aws_vpc.main will be created

 + resource "aws_vpc" "main" {

 + arn = (known after apply)

 + cidr_block = "10.0.0.0/16"

 ...

 + instance_tenancy = "dedicated"

 }

Preview your changes with terraform plan before you apply them.

Copyright © 2021 HashiCorp 39 / 83

Where are Variables Defined?

Terraform variables are placed in a file called variables.tf. Variables can
have default settings. If you omit the default, the user will be prompted to
enter a value. Here we are declaring the variables that we intend to use.

variable "prefix" {

 description = "This prefix will be included in the name of most resourc

}

variable "instance_tenancy" {

 description = "A tenancy option for instances launched into the VPC."

 default = "dedicated"

}

Copyright © 2021 HashiCorp 40 / 83

Once you have some variables
defined, you can set and override
them in different ways. Here is the
level of precedence for each
method.

This list goes from highest
precedence (1) to lowest (5).

1. Command line flag - run as a

 command line switch

2. Configuration file - set in

 your terraform.tfvars file

3. Environment variable - part of

 your shell environment

4. Default Config - default value

 in variables.tf

5. User manual entry - if not

 specified, prompt the user

 for entry

Copyright © 2021 HashiCorp

How are Variables Set?

41 / 83

👩‍💻 Getting Started with Instruqt

Instruqt is the HashiCorp training platform. Visit the link below for a short
tutorial, or if you're already familiar with Instruqt you can skip to the next
slide.

https://instruqt.com/instruqt/tracks/getting-started-with-instruqt

Copyright © 2021 HashiCorp 42 / 83

https://instruqt.com/
https://instruqt.com/instruqt/tracks/getting-started-with-instruqt

👩‍💻 Lab Exercise: Terraform Basics

In this lab you'll learn how to set up your editor, use the Terraform
command line tool, integrate with AWS, and do a few dry runs with
different settings.

Your instructor will provide the URL for the lab environment.

🛑 STOP after you complete the second quiz.

Copyright © 2021 HashiCorp 43 / 83

📝 Chapter 2 Review

In this chapter we:

Used the terraform init command

Ran the terraform plan command

Learned about variables
Set our tenancy and prefix

Copyright © 2021 HashiCorp 44 / 83

Copyright © 2021 HashiCorp

Chapter 3
Terraform in Action

45 / 83

Anatomy of a Resource

Every terraform resource is structured exactly the same way.

resource type "name" {

 parameter = "foo"

 parameter2 = "bar"

 list = ["one", "two", "three"]

}

resource = Top level keyword

type = Type of resource. Example: aws_instance .

name = Arbitrary name to refer to this resource. Used internally by
terraform. This field cannot be a variable.

Copyright © 2021 HashiCorp 46 / 83

Terraform Provider Configuration

The terraform core program requires at least one provider to build
anything.

You can manually configure which version(s) of a provider you would like
to use. If you leave this option out, Terraform will default to the latest
available version of the provider.

provider "aws" {

 version = "=2.35.0"

}

Copyright © 2021 HashiCorp 47 / 83

Versioning Operators

- = (or no operator): exact version equality

- !=: version not equal

- \>, >=, <, <=: version comparison

- ~>: pessimistic constraint, constraining both the oldest and newest

version allowed. ~> 0.9 is equivalent to >= 0.9, < 1.0, and ~> 0.8.4

is equivalent to >= 0.8.4, < 0.9

Re-usable modules should constrain only the minimum allowed version,
such as >= 2.35.0.

Copyright © 2021 HashiCorp 48 / 83

Terraform Apply

$ terraform apply

An execution plan has been generated and is shown below.

Terraform will perform the following actions:

 # aws_vpc.main will be created

 + resource "aws_vpc" "main" {

 + cidr_block = "10.0.0.0/16"

 + instance_tenancy = "dedicated"

 ...

 + tags = {

 + "Name" = "main"

 }

 }

Plan: 1 to add, 0 to change, 0 to destroy.

terraform apply runs a plan and then if you approve, it applies the changes.

Copyright © 2021 HashiCorp 49 / 83

Terraform Destroy

$ terraform destroy

An execution plan has been generated and is shown below.

Terraform will perform the following actions:

 # aws_vpc.main will be destroyed

 - resource "aws_vpc" "main" {

 - cidr_block = "10.0.0.0/16" -> null

 - instance_tenancy = "dedicated" -> null

 ...

 - tags = {

 - "Name" = "main"

 } -> null

 }

Plan: 0 to add, 0 to change, 1 to destroy.

terraform destroy does the opposite. If you approve, your infrastructure is destroyed.

Copyright © 2021 HashiCorp 50 / 83

Terraform Format

Terraform comes with a built in code formatter/cleaner. It can make all
your margins and list indentation neat and tidy. Beauty works better.

terraform fmt

Simply run it in a directory containing *.tf files and it will tidy up your code
for you.

Copyright © 2021 HashiCorp 51 / 83

Terraform Data Sources

data "aws_ami" "ubuntu" {

 most_recent = true

 filter {

 name = "name"

 values = ["ubuntu/images/hvm-ssd/ubuntu-trusty-14.04-amd64-server-*"]

 }

 filter {

 name = "virtualization-type"

 values = ["hvm"]

 }

 owners = ["099720109477"] # Canonical

}

Data sources are a way of querying a provider to return an existing resource, so that we can
access its parameters for our own use.

Copyright © 2021 HashiCorp 52 / 83

Terraform Dependency Mapping

Terraform can automatically keep track of dependencies for you. Look at the two resources
below. Note the highlighted lines in the aws_instance resource. This is how we tell one
resource to refer to another in terraform.

resource aws_key_pair "my-keypair" {

 key_name = "my-keypair"

 public_key = file(var.public_key)

}

resource "aws_instance" "web" {

 ami = data.aws_ami.ubuntu.id

 instance_type = "t2.micro"

 key_name = aws_key_pair.my-keypair.name

Copyright © 2021 HashiCorp 53 / 83

Organize Your Terraform Code

Terraform will read any file in your workspace that ends in a .tf extension,

but the convention is to have a main.tf, variables.tf, and outputs.tf. You may
add more tf files if you wish.

main.tf

variables.tf

outputs.tf

Let's take a closer look at each of these files.

Copyright © 2021 HashiCorp 54 / 83

The Main File

The first file is called main.tf. This is where you normally store your terraform code. With
larger, more complex infrastructure you might break this up across several files.

This is the main.tf file.

resource aws_vpc "main" {

 cidr_block = var.cidr_block

 instance_tenancy = var.instance_tenancy

}

resource aws_subnet "main" {

 vpc_id = aws_vpc.main.id

 cidr_block = var.cidr_block

 }

}

...

Copyright © 2021 HashiCorp 55 / 83

The Variables File

The second file is called variables.tf. This is where you define your variables and optionally
set some defaults.

variable "cidr_block" {

 description = "The address space that is used within the VPC. Changing this forces a new res

}

variable "instance_tenancy" {

 description = "A tenancy option for instances launched into the VPC. Acceptable values are '

 default = "dedicated"

}

Copyright © 2021 HashiCorp 56 / 83

The Outputs File

The outputs file is where you configure any messages or data you want to show at the end
of a terraform apply.

output "catapp_url" {

 value = "http://${aws_route53_record.hashicat.fqdn}"

}

output "private_key" {

 value = "${tls_private_key.hashicat.private_key_pem}"

}

Copyright © 2021 HashiCorp 57 / 83

Terraform Dependency Graph

The terraform resource graph
visually depicts dependencies
between resources.

The region and prefix variables are
required to create the resource
group, which is in turn required to
build the virtual network.

Copyright © 2021 HashiCorp 58 / 83

👩‍💻 Lab Exercise: Terraform in Action

Let's use Terraform to build, manage, and destroy AWS resources. In this
lab exercise you'll build the HashiCat application stack by running the
terraform apply command.

🛑 STOP after you complete the third quiz.

Copyright © 2021 HashiCorp 59 / 83

📝 Chapter 3 Review

In this chapter we:

Learned about Terraform resources
Ran terraform plan, graph, apply and destroy
Learned about dependencies
Viewed a graph of the lab
Looked at main.tf, variables.tf and outputs.tf
Built the Meow World application

Copyright © 2021 HashiCorp 60 / 83

Copyright © 2021 HashiCorp

Chapter 4
Provision and Configure AWS Instances

61 / 83

Using Terraform Provisioners

Once you've used Terraform to stand up a virtual machine or container,
you may wish to configure your operating system and applications. This is
where provisioners come in. Terraform supports several different types of
provisioners including: Bash, Powershell, Chef, Puppet, Ansible, and more.

https://www.terraform.io/docs/provisioners/index.html

Copyright © 2021 HashiCorp 62 / 83

https://www.terraform.io/docs/provisioners/index.html

The File Provisioner

The Terraform file provisioner copies files onto the remote machine.

provisioner "file" {

 source = "files/"

 destination = "/home/${var.admin_username}/"

 connection {

 type = "ssh"

 user = var.username

 private_key = file(var.ssh_key)

 host = ${self.ip}

 }

}

Note the connection block of code inside the provisioner block. The file provisioner
supports both SSH and WinRM connections.

Copyright © 2021 HashiCorp 63 / 83

The Remote Exec Provisioner

The remote exec provisioner allows you to execute scripts or other programs on the target
host. If it's something you can run unattended (for example, a software installer), then you
can run it with remote exec.

In this example we're running a few commands to change some permissions and
ownership, and to run a script with some enviroment variables.

provisioner "remote-exec" {

 inline = [

 "sudo chown -R ${var.admin_username}:${var.admin_username} /var/www/html",

 "chmod +x *.sh",

 "PLACEHOLDER=${var.placeholder} WIDTH=${var.width} HEIGHT=${var.height} PREFIX=${var.prefi

]

...

}

Copyright © 2021 HashiCorp 64 / 83

Terraform & Config Management Tools

Terraform works well with common config management tools like Chef, Puppet or Ansible.

Run Puppet with 'local-exec':

https://www.terraform.io/docs/provisioners/local-exec.html

Terraform and Ansible - Better Together:

https://github.com/scarolan/ansible-terraform

Copyright © 2021 HashiCorp 65 / 83

https://www.terraform.io/docs/provisioners/local-exec.html
https://github.com/scarolan/ansible-terraform

Terraform Provisioner Tips

Terraform provisioners like remote-exec are great when you need to run a
few simple commands or scripts. For more complex configuration
management you'll want a tool like Chef or Ansible.

Provisioners only run the first time a Terraform run is executed. In this
sense, they are not idempotent. If you need ongoing state management of
VMs or servers that are long-lived, we recommend using a config
management tool.

On the other hand, if you want immutable infrastructure you should
consider using our Packer tool.

Copyright © 2021 HashiCorp 66 / 83

https://packer.io/

👩‍💻 Lab Exercise: Provisioners, Variables and
Outputs

In part two of the lab we'll use a provisioner to install a new software
package. We will also explore variables and outputs.

Return to the training lab and continue where you left off.

🛑 STOP after you complete the fourth quiz.

Copyright © 2021 HashiCorp 67 / 83

📝 Chapter 4 Review

In this chapter we:

Learned about Terraform Provisioners
Explored the file and remote-exec provisioners
Rebuilt our web server with a new provisioning step

Copyright © 2021 HashiCorp 68 / 83

Copyright © 2021 HashiCorp

Chapter 5
Terraform State

69 / 83

Terraform State

Terraform is a stateful application. This means that it keeps track of everything you build
inside of a state file. You may have noticed the terraform.tfstate and terraform.tfstate.backup
files that appeared inside your working directory. The state file is Terraform's source of
record for everything it knows about.

{

 "terraform_version": "0.12.7",

 "serial": 14,

 "lineage": "452b4191-89f6-db17-a3b1-4470dcb00607",

 "outputs": {

 "catapp_url": {

 "value": "http://go-hashicat-5c0265179ccda553.workshop.aws.hashidemos.io",

 "type": "string"

 },

 }

}

Copyright © 2021 HashiCorp 70 / 83

Terraform Refresh

Sometimes infrastructure may be changed outside of Terraform's control.

The state file represents the last known state of the infrastructure. If you'd
like to check and see if the state file still matches what you built, you can
use the terraform refresh command.

Note that this does not update your infrastructure, it simply updates the
state file.

terraform refresh

Copyright © 2021 HashiCorp 71 / 83

Changing Existing Infrastructure

Whenever you run a plan or apply, Terraform reconciles three different data sources:

1. What you wrote in your code
2. The state file
3. What actually exists

Terraform does its best to add, delete, change, or replace existing resources based on what
is in your *.tf files. Here are the four different things that can happen to each resource during
a plan/apply:

+ create

- destroy

-/+ replace

~ update in-place

Copyright © 2021 HashiCorp 72 / 83

Terraform State Quiz

Configuration State Reality Operation

aws_instance ???

aws_instance aws_instance ???

aws_instance aws_instance aws_instance ???

aws_instance aws_instance ???

aws_instance ???

aws_instance ???

What happens in each scenario? Discuss.

Copyright © 2021 HashiCorp 73 / 83

Terraform State Quiz

Configuration State Reality Operation

aws_instance create

aws_instance aws_instance create

aws_instance aws_instance aws_instance no-op

aws_instance aws_instance delete

aws_instance no-op

aws_instance update state

What happens in each scenario? Discuss.

Copyright © 2021 HashiCorp 74 / 83

Copyright © 2021 HashiCorp

Chapter 6
Terraform Cloud

75 / 83

Terraform Cloud

Terraform Cloud is a free to use SaaS application that provides the best workflow for
writing and building infrastructure as code with Terraform.

State storage and management
Web UI for viewing and
approving Terraform runs
Private module registry
Version Control System (VCS)
integration
CLI, API or GUI driven actions
Notifications for run events
Full HTTP API for automation

Copyright © 2021 HashiCorp 76 / 83

Terraform Cloud or Terraform Enterprise?

Terraform Cloud is a hosted application that provides features like remote state
management, API driven runs, policy management and more. Many users prefer a cloud-
based SaaS solution because they don't want to maintain the infrastructure to run it.

Terraform Cloud for Business utilizes the same hosted environment as Terraform Cloud, but
you get the features more applicable to larger teams. Single Sign-on, Audit Logging, and
the ability to Terraform on-prem resources from the cloud.

Terraform Enterprise is the same application, but it runs in your own cloud environment or
data center. Some users require more control over the Terraform Cloud application, or wish
to run it in restricted networks behind corporate firewalls.

The feature list for these offerings is nearly identical. We will be using Terraform Cloud
accounts for our lab exercises today.

Copyright © 2021 HashiCorp 77 / 83

https://app.terraform.io/signup
https://www.hashicorp.com/contact-sales/terraform
https://www.hashicorp.com/go/terraform-enterprise

Terraform Remote State

By default Terraform stores its state file in the workspace directory on your
laptop or workstation. This is ok for development and experimentation, but
in a production environment you need to protect and store the state file
safely.

Terraform has an option to store and secure your state files remotely.
Terraform Cloud accounts now offer unlimited state file storage even for
open source users.

All state files are encrypted (using HashiCorp Vault) and stored securely in
your Terraform Cloud account. You'll never have to worry about losing or
deleting your state file again.

Copyright © 2021 HashiCorp 78 / 83

Terraform Cloud Execution Modes

Local Execution - Terraform commands run on your laptop or workstation
and all variables are configured locally. Only the terraform state is stored
remotely.

Remote Execution - Terraform commands are run in a Terraform Cloud
container environment. All variables are stored in the remote workspace.
Code can be stored in a Version Control System repository. Limited to 1
concurrent run for free tier users.

Copyright © 2021 HashiCorp 79 / 83

👩‍💻 Lab Exercise: Terraform Cloud

In the final part of the second lab we'll create a free Terraform Cloud
account and enable remote storage of our state file.

Return to the training lab and continue where you left off.

Copyright © 2021 HashiCorp 80 / 83

Congratulations, you completed the workshop!
Copyright © 2021 HashiCorp 81 / 83

Additional Resources

If you'd like to learn more about Terraform on AWS try the links below:

HashiCorp Learning Portal

https://learn.hashicorp.com/terraform/

Terraform - Beyond the Basics with AWS

https://aws.amazon.com/blogs/apn/terraform-beyond-the-basics-with-aws/

Terraform AWS Provider Documentation

https://www.terraform.io/docs/providers/aws/index.html

Link to this Slide Deck

https://git.io/JerH6

Copyright © 2021 HashiCorp 82 / 83

https://learn.hashicorp.com/terraform/
https://aws.amazon.com/blogs/apn/terraform-beyond-the-basics-with-aws/
https://www.terraform.io/docs/providers/aws/index.html
https://git.io/JerH6

Workshop Feedback Survey

Your feedback is important to us!

The survey is short, we promise:

https://bit.ly/hashiworkshopfeedback

Copyright © 2021 HashiCorp 83 / 83

https://bit.ly/hashiworkshopfeedback

