W aws

Terraform

AWS Terraform Workshop

Build AWS Resources with Infrastructure as Code

1/83

Introductions

e Your Name

e Job Title

e Automation Experience
e Favorite Text Editor

Copyright © 2021 HashiCorp) 1 /83

The Slide Deck

Follow along on your own computer at this link:

https: //gitio /JerH6

Copyright © 2021 HashiCorp) 2 /83

https://git.io/JerH6

Table of Contents

1. Intro to Terraform & Demo
2. Terraform Basics
£ Lab - Setup and Basic Usage
3. Terraform In Action: plan, apply, destroy
4. Organizing Your Terraform Code
& Lab - Terraform in Action
5. Provision and Configure AWS Instances
4l Lab - Provisioning with Terraform
6. Manage and Change Infrastructure State
/. Terraform Cloud
e Lab - Terraform Remote State

Copyright © 2021 HashiCorp) 3 /83

Chapter 1

Introduction to Terraform

Copyright © 2021 HashiCorp) 4 /83

How to Provision an AWS Instance

Let's look at a few different ways you could provision a new AWS Instance.
Before we start we'll need to gather some basic information including (but
not limited to):

e |nstance Name

e Operating System (Image)

e VM Size

e Geographical Location (Region)
e Security Groups

Copyright © 2021 HashiCorp) 5 /83

Method 1: AWS Console (GUI)

Services -

aws Services v Resource Groups

EC2 Dashboard Launch Instance Actions v

Instance

t2,small

t2.small

t2.micro

Events
Tags q Q Filter by tags and attributes or search by keyword
Reports

Name ~ | Instance ID =
Limits

Consul Serv i-01977bfa25fddc098

Vault Server i-01cfob25eaf5be23e

jwolfer-consu... -02600189fc3Bafadc
Launch Templates

waolfervaulth... 1-02a6351ec8e202fef

Spot Requests

Copyright © 2021 HashiCorp

t2.micro

1.Choose AMI

Resource Groups ~

3. Conf

tyGroup 7. Rowew

Step 1: Choose an Amazon Machine Image (AMI)

An AM is a template that contains the software configuration (operating system, application sarver, and applications) required to launch your instal

% Ubunty

Quick Start (9)
My AMis (50)
AWS Marketplace (251)

Community AMIs (12146)

Free tier only (i

»

Ubuntu Server 18.04 LTS (HVM), SSD Volume Type - ami-0d5d9d3010853a04a (B4-1
Ubuntu Server 18.04 LTS (HVM),EBS General Purpose (SSD) Volume Type. Support avalable from {

Foct device fype sbs Virtualization fype: fvm ENA Enabled: Yes

Ubuntu Server 16.04 LTS (HVM], SSD Volume Type - ami-0d03add87774b12¢5 (64-
Ubuntu Server 16.04 LTS {HVM),EBS General Purpose (SSD) Volume Type. Support available from ¢

Floct dedce type: bs Vituslization Bype: hum ENA Enablsd: Yes

Ubuntu Server 16.04 LTS (HVM) with SQL Server 2017 Standard - ami-02b56ead77
Microsoft SQL Server 2017 Standard edition on Ubuntu Server 16,04 LTS. The AMI also comes pre

Foct device type: sbs Virualizasion fype: hvm ENA Enablod: Yoes

NET Core 2.1 with Ubuntu Server 18.04 - Version 1.0 - ami-fdfdcfg1
NET Core 2.1 and the PowerSheil 5.0 pre-installed to run your .NET Gare applications on Ubuntu 1

Floct device fype: sbs Virtualization fype: hvm ENA Enabled: Yes

Deep Learning AMI (Ubuntu 16.04) Version 25.3 - ami-015cbadcac7Bbfd3d

MXNet-1.5.0, TensorFlow-1.14, PyTorch-1.2, Keras-2.2, Chainer-6.1, Caffe/2-0.8, Theanc-1.0/& CN
hitps://aws.amazon com/sagemaker

oot desice fypecabe Vitualization fype: hvm ENA Enabled: Yea

Deep Learning Base AMI (Ubuntu 16.04) Version 20.0 - ami-02c00a584d15c44c4

Comes with foundational platiorm of Nvidia GUDA, cUDNN, NCGL, GPU Drivers, intel MKL-ONN ar
hitps://aws.amazon.com/sagemaker

Floot dedica typer sbs Virualization fype: hum ENA Enabled: Vs

Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-0c929bde 79661484
Ubuntu Server 14.04 LTS (HVM), EBS General Purpose (SSD) Volume Typs. Support available from

oot Seies Ty 608 VITUBIZAON TyDe: MU ENA Enatied: Yes

()

6 /83

Method 1: AWS Portal (GUI)

aWS, Services v Resource Groups v *
1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group 7. Review
Step 3: Configure Instance Details X
Configure the instance to suit your requirements. You can launch multiple instances from the same AMI, request Spot instances to take advantage of"
more.
Number of instances (j 1 Launch into Auto Scaling Group (i

Purchasing option (j

Network (j vpc-61f58809 | jwolfer (default) 4] C Createnew VPC
Subnet (j No preference (default subnet in any Availability Zon § Create new subnet
Auto-assign Public IP (j Use subnet setting (Enable) S
Placement group (j Add instance to placement group

Capacity Reservation (j Open v C Create new Capacity Reservation

IAMrole (i None 4 C Create new IAM role
Shutdown behavior (i Stop v
Enable termination protection (i Protect against accidental termination
Monitoring (i Enable CloudWatch detailed monitoring

Additional charges apply.

<«

Tenancy (i Shared - Run a shared hardware instance

Copyright © 2021 HashiCorp)

7 /83

Method 2: CloudFormation Templates

{
"AWSTemplateFormatVersion” : "2010-09-09",
"Description” : "AWS CloudFormation Sample Template EC2InstanceWithSecurityGroupSample: Cre:
"Parameters" : {
"KeyName": {
"Description” : "Name of an existing EC2 KeyPair to enable SSH access to the instance",
"Type": "AWS::EC2::KeyPair::KeyName",
"ConstraintDescription” : "must be the name of an existing EC2 KeyPair."
b -
}
}

CloudFormation Templates provide a consistent and reliable way to provision AWS
resources. JSON is easy for computers to read, but can be challenging for humans to edit

CanaetrSUBleshsot e (i 8 / 83

Method 3: Provision with Terraform

resource aws_instance "web" {
data.aws_ami.ubuntu.1id

ami =
instance_type = "t2.micro"
tags = {

Name = "HelloWorld"
}

}

Example Terraform code for building an AWS instance.

9 /83

Copyright © 2021 HashiCorp)

What is Terraform?

resource aws_instance "catapp" {

ami = data.aws_ami.ubuntu.1id
instance_type = var.instance_type
tags = {
Name = "${var.prefix}-meow"
}

e Executable Documentation

e Human and machine readable

e Easy to learn

e Test, share, re-use, automate

e Works on all major cloud providers

Copyright © 2021 HashiCorp) 10 / 83

What is Infrastructure as Code?

Infrastructure as Code (laC) is the process of managing and provisioning
cloud infrastructure with machine-readable definition files.

Think of it as executable documentation.

Copyright © 2021 HashiCorp) 11 / 83

Infrastructure as Code Allows Us To..

Copyright © 2021 HashiCorp) 12 / 83

Infrastructure as Code Allows Us To..

e Provide a codified workflow to create infrastructure

Copyright © 2021 HashiCorp) 13 / 83

Infrastructure as Code Allows Us To..

e Provide a codified workflow to create infrastructure
e Change and update existing infrastructure

Copyright © 2021 HashiCorp) 14 / 83

Infrastructure as Code Allows Us To..

e Provide a codified workflow to create infrastructure
e Change and update existing infrastructure
e Safely test changes using terraform plan in dry run mode

Copyright © 2021 HashiCorp) 15 / 83

Infrastructure as Code Allows Us To..

e Provide a codified workflow to create infrastructure
e Change and update existing infrastructure
e Safely test changes using terraform plan in dry run mode

e Integrate with application code workflows (Git, Cl /CD tools)

Copyright © 2021 HashiCorp) 16 / 83

Infrastructure as Code Allows Us To..

e Provide a codified workflow to create infrastructure

e Change and update existing infrastructure

e Safely test changes using terraform plan in dry run mode

e Integrate with application code workflows (Git, Cl /CD tools)
e Provide reusable modules for easy sharing and collaboration

Copyright © 2021 HashiCorp) 17 / 83

Infrastructure as Code Allows Us To..

e Provide a codified workflow to create infrastructure

e Change and update existing infrastructure

e Safely test changes using terraform plan in dry run mode

e Integrate with application code workflows (Git, Cl /CD tools)
e Provide reusable modules for easy sharing and collaboration
e Enforce security policy and organizational standards

Copyright © 2021 HashiCorp) 18 / 83

Infrastructure as Code Allows Us To..

e Provide a codified workflow to create infrastructure

e Change and update existing infrastructure

e Safely test changes using terraform plan in dry run mode

e Integrate with application code workflows (Git, Cl /CD tools)
e Provide reusable modules for easy sharing and collaboration
e Enforce security policy and organizational standards

e Enable collaboration between different teams

Copyright © 2021 HashiCorp) 19 / 83

Other Infrastructure as Code Tools

|®\ CHEF
ﬂ PowerShell

EEEEEEEEEEEEEEEEEEEE

ANSIBLE

These tools work well for configuring the operating system and
application. They are not purpose-built for provisioning cloud
iInfrastructure and platform services.

Copyright © 2021 HashiCorp) 20 / 83

Native Cloud Provisioning Tools

-

-

AWS

\

&

/

K Brand A /

- D

=

_ BrandG /

Each cloud has its own YAML or JSON based provisioning tool.

Terraform can be used across all major cloud providers and VM
hypervisors.

Copyright © 2021 HashiCorp

®

21 /83

FaaS and Furious by Forrest Brazeal () A CLOUD GURU

© 2018 Forrest Brazeal. All rights reserved.

"Come on, make up your mind -
or it's back to the Sinkhole of Nested XML."

Copyright © 2021 HashiCorp 3] 22 /83

Terraform vs. JSON

CFT JSON:

"name": "{ "Fn::Join" : ["-", [PilotServerName, vm]] }",
Terraform:

name = "${var.PilotServerName}-vm"

Terraform code (HCL) is easy to learn and easy to read. It is also 50-70%
more compact than an equivalent JSON configuration.

Copyright © 2021 HashiCorp) 23 / 83

Why Terraform?

@ Tour Families Business Pricing Security Support Blog Signin Try 1Password FREE

Terraforming 1Password
NEWS
@ by Roustem Karimov on Jan 25, 2018

Share this page

A tweet i posted a few days a go generated quite a bit of interest from
people running or managing their services, and | thought | would share
some of the cool things we are working on.

B

Roustem Karimov &
@roustem

1Password servers will be down for the next few hours. We are
recreating our entire environment to replace AWS CloudFormation
with @HashiCorp Terraform. It is like creating a brand new
universe, from scratch.

Q372 2:04 PM-Jan 21,2018 [©)
O 128 people are talking about this >
This post will go into technical details and | apologize in advance if | explain things too

quickly. I tried to make up for this by including some pretty pictures but most of them

ended up being code snippets. ®

https: //blog.lpassword.com /terraforming-1password /

Copyright © 2021 HashiCorp) 24 / 83

https://blog.1password.com/terraforming-1password/

Why Terraform on AWS?

e Supports multi-cloud & hybrid infrastructure

Copyright © 2021 HashiCorp) 25 / 83

Why Terraform on AWS?

e Supports multi-cloud & hybrid infrastructure
e Migrate from other cloud providers

Copyright © 2021 HashiCorp) 26 / 83

Why Terraform on AWS?

e Supports multi-cloud & hybrid infrastructure
e Migrate from other cloud providers
e |ncrease provisioning speed

Copyright © 2021 HashiCorp) 27 / 83

Why Terraform on AWS?

e Supports multi-cloud & hybrid infrastructure
e Migrate from other cloud providers

e |ncrease provisioning speed

e Improve efficiency

Copyright © 2021 HashiCorp) 28 / 83

Why Terraform on AWS?

e Supports multi-cloud & hybrid infrastructure
e Migrate from other cloud providers

e |ncrease provisioning speed

e Improve efficiency

e Reduce risk

Copyright © 2021 HashiCorp) 29 / 83

Live Demo

Copyright © 2021 HashiCorp) 30 /83

Chapter 2

Terraform Basics

Copyright © 2021 HashiCorp) 31 /83

What is Terraform?

Terraform is an open source
provisioning tool.

It ships as a single binary which is
written in Go. Terraform is cross
platform and can run on Linux,
Windows, or MacOS.

Installing terraform is easy. You
simply download a zip file, unzip it

Te rraform and run It.

Copyright © 2021 HashiCorp) 32 /83

HashiCorp

Terraform Command Line

Terraform has subcommands that
Terraform is a command line tool. perform different actions.

Terraform commands are either
typed in manually or run

Basic Terraform Commands
terraform version

automatically from a script. terraform help
terraform init
The commands are the same terraform plan
whether you are on Linux or terraform apply
Windows or MacOS. terraform destroy

Copyright © 2021 HashiCorp) 33 /83

Terraform Help

$ terraform help
Usage: terraform [-version] [-help] <command> [args]

Common commands:

apply Builds or changes infrastructure

console Interactive console for Terraform interpolations
destroy Destroy Terraform-managed infrastructure

env Workspace management

fmt Rewrites config files to canonical format

graph Create a visual graph of Terraform resources

Type terraform subcommand help to view help on a particular
subcommand.

Copyright © 2021 HashiCorp) 34 /83

Terraform Code

resource aws_vpc "'main" {

cidr_block
instance_tenancy

}

Terraform code is based on the HCL2 toolkit. HCL stands for HashiCorp

"10.0.0.0/16"
"dedicated"

Configuration Language.

Terraform code, or simply terraform is a declarative language that is
specifically designed for provisioning infrastructure on any cloud or

platform.

Copyright © 2021 HashiCorp

(L

35 / 83

https://github.com/hashicorp/hcl

Terraform Comments

Line Comments begin with an octothorpe*, or pound symbol: #
This 1s a line comment.
Block comments are contained between /* and */ symbols.

/* This 1s a block comment.
Block comments can span multiple lines.
The comment ends with this symbol: */

* Yes, it really is called an octothorpe.

Copyright © 2021 HashiCorp) 36 / 83

https://www.merriam-webster.com/dictionary/octothorpe

Terraform Workspaces

A terraform workspace is simply a folder or directory that contains
terraform code.

Terraform files always end in either a *.tf or *.tfvars extension.
Most terraform workspaces contain a minimum of three files:

maintf - Most of your functional code will go here.
variablestf - This file is for storing variables.
outputstf - Define what is shown at the end of a terraform run.

Copyright © 2021 HashiCorp) 37 /83

Terraform Init

$ terraform init

Initializing provider plugins...
- Checking for available provider plugins...
- Downloading plugin for provider "aws" (hashicorp/aws) 2.35.0...

provider.aws: version = "~> 2.35"

Terraform has been successfully initialized!

Terraform fetches any required providers and modules and stores them in
the terraform directory. If you add, change or update your modules or
providers you will need to run init again.

Copyright © 2021 HashiCorp) 38 /83

Terraform Plan

$ terraform plan
An execution plan has been generated and is shown below.
Terraform will perform the following actions:

aws_vpc.main will be created

+ resource "aws_vpc" "main" {
+ arn = (known after apply)
+ cidr_block = "10.0.0.0/16"

"dedicated”

+ 1nstance_tenancy

}

Preview your changes with terraform plan before you apply them.

Copyright © 2021 HashiCorp) 39 /83

Where are Variables Defined?

Terraform variables are placed in a file called variables.tf. Variables can
have default settings. If you omit the default, the user will be prompted to
enter a value. Here we are declaring the variables that we intend to use.

variable "prefix" {

description = "This prefix will be included in the name of most resour
}
variable "instance_tenancy" {
description = "A tenancy option for instances launched into the VPC."
default = "dedicated"

Copyright © 2021 HashiCorp) 40 / 83

How are Variables Set?

Once you have some variables
defined, you can set and override
them in different ways. Here is the
level of precedence for each
method.

This list goes from highest
precedence (1) to lowest (5).

Copyright © 2021 HashiCorp

(L

. Command 1ine flag - run as a

command 1ine switch

. Configuration file - set 1in

your terraform.tfvars file

. Environment variable - part of

your shell environment

. Default Config - default value

in variables.tf

. User manual entry - if not

specified, prompt the user
for entry

41 / 83

) Getting Started with Instrugt

Instrugt is the HashiCorp training platform. Visit the link below for a short
tutorial, or if youre already familiar with Instrugt you can skip to the next
slide.

https: //instrugt.com /instrugt /tracks /getting-started-with-instrugt

Copyright © 2021 HashiCorp) 42 /83

https://instruqt.com/
https://instruqt.com/instruqt/tracks/getting-started-with-instruqt

=3 Lab Exercise: Terraform Basics

In this lab youll learn how to set up your editor, use the Terraform
command line tool, integrate with AWS, and do a few dry runs with

different settings.

Your instructor will provide the URL for the lab environment.

@ STOP after you complete the second quiz.

Copyright © 2021 HashiCorp) 43 / 83

= Chapter 2 Review

In this chapter we:

e Used the terraform init command
e Ran the terraform plan command

e | earned about variables
e Set our tenancy and prefix

Copyright © 2021 HashiCorp) 44 / 83

Chapter 3

Terraform In Action

Copyright © 2021 HashiCorp) 45 / 83

Anatomy of a Resource

Every terraform resource is structured exactly the same way.

resource type "name" {

parameter = "foo"

parameter2 = "bar"

Tist = ["one", "two", "three"]
}

resource = Top level keyword
type = Type of resource. Example: aws_instance.

name = Arbitrary name to refer to this resource. Used internally by
terraform. This field cannot be a variable.

Copyright © 2021 HashiCorp) 46 / 83

Terraform Provider Configuration

The terraform core program requires at least one provider to build
anything.

You can manually configure which version(s) of a provider you would like
to use. If you leave this option out, Terraform will default to the latest
available version of the provider.

provider "aws" {
version = "=2.35.0"

}

Copyright © 2021 HashiCorp) 47 / 83

Versioning Operators

- = (or no operator): exact version equality

- I=: version not equal

- \>, >=, <, <=: version comparison

- ~>: pessimistic constraint, constraining both the oldest and newest
version allowed. ~> 0.9 1s equivalent to >= 0.9, < 1.0, and ~> 0.8.4
1s equivalent to >= 0.8.4, < 0.9

Re-usable modules should constrain only the minimum allowed version,
such as >= 2.35.0.

Copyright © 2021 HashiCorp) 48 / 83

Terraform Apply

$ terraform apply
An execution plan has been generated and is shown below.

Terraform will perform the following actions:
aws_vpc.main will be created

+ resource "aws_vpc" "main" {
+ cidr_block = "10.0.0.0/16"
+ 1nstance_tenancy = "dedicated"
+ tags = {
+ "Name" = "main"

}

Plan: 1 to add, 0 to change, 0 to destroy.

terraform apply runs a plan and then if you approve, it applies the changes.
Copyright © 2021 HashiCorp) 49 /83

Terraform Destroy

$ terraform destroy
An execution plan has been generated and is shown below.

Terraform will perform the following actions:
aws_vpc.main will be destroyed

- resource "aws_vpc" "main" {
- cidr_block = "10.0.0.0/16" -> null
- instance_tenancy = "dedicated" -> null
- tags = {
- "Name" = "main"

} -> null
¥

Plan: 0 to add, 0 to change, 1 to destroy.

terraform destroy does the opposite. If you approve, your infrastructure is destroyed.
Copyright © 2021 HashiCorp) 50 / 83

Terraform Format

Terraform comes with a built in code formatter /cleaner. It can make all
your margins and list indentation neat and tidy. Beauty works better.

terraform fmt

Simply run it in a directory containing “if files and it will tidy up your code
for you.

Copyright © 2021 HashiCorp) 51 / 83

Terraform Data Sources

data "aws_ami" "ubuntu" {
most_recent =

filter {
name = "name"
values = ["ubuntu/images/hvm-ssd/ubuntu-trusty-14.04-amd64-server-+*"]
}
filter {
name = "virtualization-type"
values = ["hvm"]
}

owners = ["099720109477"] # Canonical

Data sources are a way of querying a provider to return an existing resource, so that we can
access its parameters for our own use.

Copyright © 2021 HashiCorp) 52 / 83

Terraform Dependency Mapping

Terraform can automatically keep track of dependencies for you. Look at the two resources

below. Note the highlighted lines in the aws_instance resource. This is how we tell one
resource to refer to another in terraform.

resource aws_key_pair "my-keypair" {
key_name = "my-keypair"
public_key = file(var.public_key)

}

resource "aws_instance" "web" {
ami = data.aws_ami.ubuntu.id
instance_type = "t2.micro"
key_name = aws_key_pair.my-keypair.name

Copyright © 2021 HashiCorp) 53 / 83

Organize Your Terraform Code

Terraform will read any file in your workspace that ends in a .tf extension,

but the convention is to have a maindtf, variablesitf, and outputsitf. You may
add more tf files if you wish.

main.tf
variables.tf
outputs.tf

Let's take a closer look at each of these files.

Copyright © 2021 HashiCorp) 54 / 83

The Main File

The first file is called maindtf. This is where you normally store your terraform code. With
larger, more complex infrastructure you might break this up across several files.

This is the main.tf file.

resource aws_vpc "main" {
cidr_bTock = var.cidr_block
instance_tenancy = var.instance_tenancy

}

resource aws_subnet "main" {
vpc_id = aws_vpc.main.id
cidr_block = var.cidr_block
}

Copyright © 2021 HashiCorp) 55 / 83

The Variables File

The second file is called variablestf. This is where you define your variables and optionally
set some defaults.

variable "cidr_block" {

description = "The address space that is used within the VPC. Changing this forces a new re:
}
variable "instance_tenancy" {
description = "A tenancy option for instances launched into the VPC. Acceptable values are '
default = "dedicated"

Copyright © 2021 HashiCorp) 56 / 83

The Outputs File

The outputs file is where you configure any messages or data you want to show at the end
of a terraform apply.

output "catapp_url" {
value = "http://${aws_route53_record.hashicat.fqgdn}"

}

output "private_key" {
value = "${tls_private_key.hashicat.private_key_pem}"

}

Copyright © 2021 HashiCorp) 57 / 83

Terraform Dependency Graph

The terraform resource graph
visually depicts dependencies
between resources.

The region and prefix variables are
required to create the resource
group, which is in turn required to
build the virtual network.

Copyright © 2021 HashiCorp) 58 / 83

=3 Lab Exercise: Terraform in Action

Let's use Terraform to build, manage, and destroy AWS resources. In this
lab exercise youll build the HashiCat application stack by running the
terraform apply command.

@ STOP after you complete the third quiz.

Copyright © 2021 HashiCorp) 59 / 83

= Chapter 3 Review

In this chapter we:

e | earned about Terraform resources

e Ran terraform plan, graph, apply and destroy
e | earned about dependencies

e Viewed a graph of the lab

e | ooked at maindtf, variables.tf and outputs.tf

e Built the Meow World application

Copyright © 2021 HashiCorp) 60 / 83

Chapter 4

Provision and Configure AWS Instances

Copyright © 2021 HashiCorp) 61 / 83

Using Terraform Provisioners

Once you've used Terraform to stand up a virtual machine or container,

you may wish to configure your operating system and applications. This is
where provisioners come in. Terraform supports several different types of
provisioners including: Bash, Powershell, Chef, Puppet, Ansible, and more.

https: //www.terraform.io /docs /provisioners /index.htm|

Copyright © 2021 HashiCorp) 62 / 83

https://www.terraform.io/docs/provisioners/index.html

The File Provisioner
The Terraform file provisioner copies files onto the remote machine.

provisioner "file" {
source = "files/"
destination = "/home/${var.admin_username}/"

connection {

type = "ssh"
user = var.username
private_key = file(var.ssh_key)
host = ${self.ip}
}
}

Note the connection block of code inside the provisioner block. The file provisioner
supports both SSH and WinRM connections.

Copyright © 2021 HashiCorp) 63 / 83

The Remote Exec Provisioner

The remote exec provisioner allows you to execute scripts or other programs on the target

host. If it's something you can run unattended (for example, a software installer), then you
can run it with remote exec.

provisioner "remote-exec" {
inline = [

"sudo chown -R ${var.admin_username}:${var.admin_username} /var/www/html",
"chmod +x *.sh",

"PLACEHOLDER=${var.placeholder} WIDTH=${var.width} HEIGHT=${var.height} PREFIX=${var.pref-

In this example were running a few commands to change some permissions and

ownership, and to run a script with some enviroment variables.
Copyright% 2821 Hashigorp P ILI:[J1

64 /83

Terraform & Config Management Tools

puppet l@‘ CHEF 6 ANSIBLE

Terraform works well with commmon config management tools like Chef, Puppet or Ansible.

Run Puppet with local-exec:
https: //www.terraform.io /docs /provisioners /local-exec.html

Terraform and Ansible - Better Together:
https: //github.com /scarolan /ansible-terraform

Copyright © 2021 HashiCorp) 65 / 83

https://www.terraform.io/docs/provisioners/local-exec.html
https://github.com/scarolan/ansible-terraform

Terraform Provisioner Tips

Terraform provisioners like remote-exec are great when you need to run a
few simple commands or scripts. For more complex configuration
management you'll want a tool like Chef or Ansible.

Provisioners only run the first time a Terraform run is executed. In this
sense, they are not idempotent. If you need ongoing state management of
VMs or servers that are long-lived, we recommend using a config
management tool.

On the other hand, if you want immutable infrastructure you should
consider using our Packer tool.

Copyright © 2021 HashiCorp) 66 / 83

https://packer.io/

= Lab Exercise: Provisioners, Variables and
Outputs

In part two of the lab we'll use a provisioner to install a new software
package. We will also explore variables and outputs.

Return to the training lab and continue where you left off.

@ STOP after you complete the fourth quiz.

Copyright © 2021 HashiCorp) 67 / 83

= Chapter 4 Review

In this chapter we:

e |earned about Terraform Provisioners
e Explored the file and remote-exec provisioners
e Rebuilt our web server with a new provisioning step

Copyright © 2021 HashiCorp) 68 / 83

Chapter 5

Terraform State

Copyright © 2021 HashiCorp) 69 / 83

Terraform State

Terraform is a stateful application. This means that it keeps track of everything you build
inside of a state file. You may have noticed the terraform.ifstate and terraform.tfstate.backup

files that appeared inside your working directory. The state file is Terraform's source of
record for everything it knows about.

"terraform_version": "0.12.7",
"serial": 14,
"Tineage": "452b4191-89f6-db17-a3b1-4470dcb00607",
"outputs": {
"catapp_url": {
"value": "http://go-hashicat-5c0265179ccda553.workshop.aws.hashidemos.io",
"type": "string"
I -
}
}

Copyright © 2021 HashiCorp) 70 / 83

Terraform Refresh

Sometimes infrastructure may be changed outside of Terraform's control.

The state file represents the /ast known state of the infrastructure. If you'd

like to check and see if the state file still matches what you built, you can
use the terraform refresh command.

Note that this does not update your infrastructure, it simply updates the
state file.

terraform refresh

Copyright © 2021 HashiCorp) 71 / 83

Changing Existing Infrastructure

Whenever you run a plan or apply, Terraform reconciles three different data sources:

1. What you wrote in your code
2. The state file
3. What actually exists

Terraform does its best to add, delete, change, or replace existing resources based on what
is in your “if files. Here are the four different things that can happen to each resource during

a plan/apply:

+ Ccreate

- destroy

-/+ replace

~ update in-place

Copyright © 2021 HashiCorp) 72 / 83

Terraform State Quiz

Configuration State Reality Operation
aws_instance 77?7
aws_instance aws_instance 277
aws_instance aws_instance aws_instance 77?7
aws_instance aws_instance 277
aws_instance 77?7
aws_instance 777

What happens in each scenario? Discuss.

Copyright © 2021 HashiCorp) 73 / 83

Terraform State Quiz

Configuration
aws_instance
aws_instance
aws_instance

State
aws_instance
aws_instance

aws_instance

aws_instance

Reality

aws_instance
aws_instance
aws_instance

Operation
create
create
no-op
delete
no-op

update state

What happens in each scenario? Discuss.

Copyright © 2021 HashiCorp

(L

74 / 83

Chapter ©

Terraform Cloud

Copyright © 2021 HashiCorp) 75 / 83

Terraform Cloud

Terraform Cloud is a free to use SaaS application that provides the best workflow for
writing and building infrastructure as code with Terraform.

e State storage and management
e Web Ul for viewing and

. ..’ workspace / infrastructure-prod
a p p rOVI n g Te rrafo r m ru n S . run-QPs8 triggered from Github €,

API CLi Merge pull request #438 from hashicorp/t!

| @ Plan finished
plan

e Private module registry

e Version Control System (VCS)
Integration

e CLI, APl or GUI driven actions

e Notifications for run events “eurt i D

e Full HTTP API for automation

Copyright © 2021 HashiCorp) 76 / 83

Terraform Cloud or Terraform Enterprise?

Terraform Cloud is a hosted application that provides features like remote state
management, AP| driven runs, policy management and more. Many users prefer a cloud-
based SaaS solution because they dont want to maintain the infrastructure to run it.

Terraform Cloud for Business utilizes the same hosted environment as Terraform Cloud, but
you get the features more applicable to larger teams. Single Sign-on, Audit Logging, and
the ability to Terraform on-prem resources from the cloud.

Terraform Enterprise is the same application, but it runs in your own cloud environment or
data center. Some users require more control over the Terraform Cloud application, or wish
to run it in restricted networks behind corporate firewalls.

The feature list for these offerings is nearly identical. We will be using Terraform Cloud
accounts for our lab exercises today.

Copyright © 2021 HashiCorp) 77 / 83

https://app.terraform.io/signup
https://www.hashicorp.com/contact-sales/terraform
https://www.hashicorp.com/go/terraform-enterprise

Terraform Remote State

By default Terraform stores its state file in the workspace directory on your
laptop or workstation. This is ok for development and experimentation, but
In a production environment you need to protect and store the state file
safely.

Terraform has an option to store and secure your state files remotely.
Terraform Cloud accounts now offer unlimited state file storage even for
open source users.

All state files are encrypted (using HashiCorp Vault) and stored securely in
your Terraformn Cloud account. You'll never have to worry about losing or
deleting your state file again.

Copyright © 2021 HashiCorp) 78 / 83

Terraform Cloud Execution Modes

Local Execution - Terraform commands run on your laptop or workstation
and all variables are configured locally. Only the terraform state is stored

remotely.

Remote Execution - Terraform commands are run in a Terraform Cloud
container environment. All variables are stored in the remote workspace.
Code can be stored in a Version Control System repository. Limited to 1
concurrent run for free tier users.

Copyright © 2021 HashiCorp) 79 / 83

-y Lab Exercise: Terraform Cloud

In the final part of the second lab well create a free Terraform Cloud
account and enable remote storage of our state file.

Return to the training lab and continue where you left off.

Copyright © 2021 HashiCorp) 80 / 83

Congratulations, you completed the workshop!

Copyright © 2021 HashiCorp 7] 81 /83

Additional Resources

If you'd like to learn more about Terraform on AWS try the links below:

HashiCorp Learning Portal
https: //learn.hashicorp.com /terraform /

Terraform - Beyond the Basics with AWS
https: //aws.amazon.com /blogs /apn /terraform-beyond-the-basics-with-aws /

Terraform AWS Provider Documentation
https: / /wwwterraform.io /docs /providers /aws /index.html

Link to this Slide Deck
https: //git.io /JerH6

Copyright © 2021 HashiCorp) 82 / 83

https://learn.hashicorp.com/terraform/
https://aws.amazon.com/blogs/apn/terraform-beyond-the-basics-with-aws/
https://www.terraform.io/docs/providers/aws/index.html
https://git.io/JerH6

Workshop Feedback Survey

Your feedback is important to us!

The survey is short, we promise:

https: / /bit.ly /hashiworkshopfeedback

Copyright © 2021 HashiCorp) 83 / 83

https://bit.ly/hashiworkshopfeedback

