
Python 3: Child processes
Bob Dowling rjd4@cam.ac.uk

29 October 2012

Prerequisites
This self-paced course assumes that you have a knowledge of Python 3 equivalent to having completed one
or other of

• Python 3: Introduction for Absolute Beginners, or

• Python 3: Introduction for Those with Programming Experience

Some experience beyond these courses is always useful but no other course is assumed.

The course also assumes that you know how to use a Unix text editor (gedit, emacs, vi, …).

Facilities for this session
The computers in this room have been prepared for these self-paced courses. They are already logged in
with course IDs and have home directories specially prepared. Please do not log in under any other ID.

At the end of this session the home directories will be cleared. Any files you leave in them will be deleted.
Please copy any files you want to keep.

The home directories contain a number of subdirectories one for each topic.

For this topic please enter directory subprocess. All work will be completed there:

$ cd subprocess

$ pwd

/home/x250/subprocess

$

These courses are held in a room with two demonstrators. If you get stuck or confused, or if you just have a
question raised by something you read, please ask!

These handouts and the prepared folders to go with them can be downloaded from
www.ucs.cam.ac.uk/docs/course-notes/unix-courses/pythontopics

The formal Python 3 documentation for the topics covered here can be found online at
docs.python.org/release/3.2.3/library/subprocess.html

Table of Contents
Prerequisites.. 1
Facilities for this session.. 1

Notation.. 3
Warnings.. 3
Exercises... 3

Exercise 0.. 3
Input and output... 3
Keys on the keyboard.. 3
Content of files... 3
What’s in this course.. 4
Running a simple program... 5

Exercise 1.. 5
Capturing the output in a file.. 6

Exercise 2.. 7
Reading the input from a file.. 7

Exercise 3.. 8
Exercise 4.. 8

Capturing the output in a string.. 8
Exercise 5.. 9

Running programs in the background..9
Exercise 6.. 11

Piping programs together... 11
Exercise 7.. 12

Reading output from running processes..13
Exercise 8.. 13

Passing data into a background process...13

2/14

Notation

Warnings

! Warnings are marked like this. These sections are used to highlight common
mistakes or misconceptions.

Exercises


Exercise 0

Exercises are marked like this. You are expected to complete all exercises. Some
of them do depend on previous exercises being successfully completed.

Input and output
Material appearing in a terminal is presented like this:

$ more lorem.txt
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
--More--(44%)

The material you type is presented like this: ls. (Bold face, typewriter font.)

The material the computer responds with is presented like this: “Lorem ipsum”. (Typewriter font again but in
a normal face.)

Keys on the keyboard
Keys on the keyboard will be shown as the symbol on the keyboard surrounded by square brackets, so the
“A key” will be written “[A]”. Note that the return key (pressed at the end of every line of commands) is written
“[]”, the shift key as “[]”, and the tab key as “[]”. Pressing more than one key at the same time (such as ↲ ⇧ ↹
pressing the shift key down while pressing the A key) will be written as “[]+[A]”. Note that pressing [A] ⇧
generates the lower case letter “a”. To get the upper case letter “A” you need to press []+[A].⇧

Content of files
The content1 of files (with a comment) will be shown like this:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. This is a comment about the line.

1 The example text here is the famous “lorem ipsum” dummy text used in the printing and typesetting
industry. It dates back to the 1500s. See http://www.lipsum.com/ for more information.

3/14

What’s in this course
This course is for people who want to launch other programs from their Python scripts, either one at a time,
several at the same time, or several all linked together.

1. Running a single program

2. Writing to files

3. Reading from files

4. Catching the results in a string

5. Running programs in the background

6. Piping programs together

7. Communicating with running processes

4/14

Running a simple program
Let’s start simple. Suppose we want to run “ls -l” from within Python (and we don’t want to roll our own
with the os module).

The module for managing subprocesses is called “subprocess” and contains a function “call()” which
allows you to call another program from within Python. The script in your directory, example01.py,
illustrates exactly this process:

import subprocess

print('About to run ls.')

subprocess.call(['ls', '-l'])

print('Finished running ls.')

and performs like this:

$ python3 example01.py

About to run ls.
total 735
drwx------ 0 rjd4 rjd4 0 Oct 17 15:04 alpha
drwx------ 0 rjd4 rjd4 0 Oct 17 15:04 beta
-rwx------ 0 rjd4 rjd4 103 Oct 17 15:04 example01.py
-rwx------ 0 rjd4 rjd4 138 Oct 17 15:04 example02.py
-rwx------ 0 rjd4 rjd4 158 Oct 17 15:04 example03.py
-rwx------ 0 rjd4 rjd4 150 Oct 17 15:04 example04.py
-rwx------ 0 rjd4 rjd4 183 Oct 17 15:04 example05.py
-rwx------ 0 rjd4 rjd4 174 Oct 17 15:04 example06.py
-rwx------ 0 rjd4 rjd4 120 Oct 17 15:04 example07.py
-rwx------ 0 rjd4 rjd4 173 Oct 17 15:04 example08.py
-rwx------ 0 rjd4 rjd4 342 Oct 17 15:04 example09.py
-rwx------ 0 rjd4 rjd4 237 Oct 17 15:04 example10.py
-rwx------ 0 rjd4 rjd4 42 Oct 17 15:20 exercise01.py
-rwx------ 0 rjd4 rjd4 7544 Oct 17 15:15 iterator
-rwx------ 0 rjd4 rjd4 75674 Oct 17 15:04 notes.odt
-rwx------ 0 rjd4 rjd4 283961 Oct 17 15:04 notes.pdf
-rwx------ 0 rjd4 rjd4 534 Oct 17 15:04 plot_iter
-rwx------ 0 rjd4 rjd4 364589 Oct 17 15:04 treasure.txt
Finished running ls.

$

This is a really trivial example but illustrates a few points:

• The final print() statement isn’t run until the run of “ls -l” is finished.

• The output of ls goes to the same place as the output of print().

• The command launched needs to be split into a list of arguments; it is not just a string.

This script uses a fixed command line. Obviously you could use Python’s list manipulations to change it.


Exercise 1

Edit the script exercise01.py to run the command

./iterator 0.60

The script should generate a lot of numerical data on the screen.

All commands return a simple numerical value to indicate whether they completed successfully. This is called
the “return code” for the run. A value of zero (0) indicates that the program completed successfully. A non-
zero value indicates that there was a problem. Most programs return one (1) if there was any problem; a few

5/14

have various different non-zero values depending on what the problem was. A return code of 127 means that
the command could not be found.

The subprocess.call() function returns this code to the script, as shown in example02.py:

import subprocess
print('About to run ls.')
rc = subprocess.call(['ls', '-l'])
print('Finished running ls.')
print('RC = {:d}'.format(rc))

$ python3 example02.py

About to run ls.

Total 36
-rwx------. 1 rjd4 rjd4 103 Oct 14 15:54 example01.py
-rwx------. 1 rjd4 rjd4 138 Oct 14 15:56 example02.py
-rw-r--r--. 1 rjd4 rjd4 28209 Oct 14 15:48 notes.odt

Finished running ls.

RC = 0

$

Obviously we may not want to have our output displayed to the screen. There are two common alternative
ways to capture the output:

• to a file

• as a text object

Capturing the output in a file
The shell has redirection operators like “>” to divert standard output to a file. Python’s subprocess module
has something equivalent if not so syntactically elegant.

First we have to open a file for writing to to put our output in. We will call ours ls_out.txt for these
examples:

ls_output = open('ls_out.txt', 'w')

This gives us a Python file object. Next we have to tell subprocess.call() to use it with the stdout
parameter:

rc = subprocess.call(['ls', '-l'], stdout=ls_output)

After the program is complete, we need to close the file:

ls_output.close()

An example of this exists in example03.py (which no longer has the “about to…” and “finished…” lines):

6/14

$ python3 example03.py

RC = 0

$ more ls_out.txt

total 44
-rwx------. 1 rjd4 rjd4 103 Oct 14 15:54 example01.py
-rwx------. 1 rjd4 rjd4 138 Oct 14 15:56 example02.py
-rw-rw-r--. 1 rjd4 rjd4 158 Oct 14 16:14 example03.py
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 14 16:15 ls_out.txt
-rw-r--r--. 1 rjd4 rjd4 28767 Oct 14 16:12 notes.odt

$

Apart from our printing of the return code the example script was completely silent; all the output went to the
file.


Exercise 2

Copy the script exercise01.py to exercise02.py and edit it to divert the
standard output (the numerical data) to a file called output.dat.

You need to complete this exercise before attempting the next one, as you will be
using the output.dat file.

Reading the input from a file
The converse of writing output to a file is reading the command’s input from a file.

We have already noted that commands have a standard output that goes to the terminal by default and
which we can divert to an open Python file object. Similarly, they have a “standard input” which reads from
the keyboard by default, but which can be told to read from an open file object.

We will switch from using the ls program for this example, as it does not read in any input. Instead we will
use the “wc” program which, if used without any arguments, reads its standard input and prints out the
numbers of lines, words and characters it receives. Just as there is a stdout=… parameter in
subprocess.call() to specify standard output there is a stdin=… parameter to specify standard input.

This is demonstrated in example04.py which reads in the text of “Treasure Island” and feeds it to wc:

import subprocess
wc_input = open('treasure.txt', 'r')
rc = subprocess.call(['wc'], stdin=wc_input)
wc_input.close()
print('RC = {:d}'.format(rc))

This behaves as follows:

$ python3 example04.py

 8734 67945 364589

RC = 0

$

There is nothing to stop us specifying files for both standard input and standard output.

7/14


Exercise 3

Note: You should already have a data file output.dat from the previous
exercise. You will need it for this one.

There is a program called “plot_iter” in your directory that takes the data from
the iterator program on its standard
input and plots it on a graph in a file.

Create a Python script called
exercise03.py which runs the
program ./plot_iter with its standard
input read from the file output.dat.

If it runs correctly it will create a file
called graph_0.600000.png which
you can view with the eog program, or
by double-clicking on its icon in the file
browser.

$ eog graph_0.600000.png


Exercise 4

Combine exercise02.py and
exercise03.py to create a Python
script, exercise04.py, that runs
./iterator with parameter 0·55 to
create a new output.dat and then
runs ./plot_iter to generate a new
graph file, graph_0.550000.png.

Don’t forget to close the file after writing
it before opening it for reading the data
back again.

$ rm output.dat

$ python3 exercise05.py

$ eog graph_0.550000.png

Capturing the output in a string
There is an alternative to subprocess.call() called “subprocess.check_output()” which diverts the
standard output into an array of bytes, which can then be converted into a standard Python text object. The
script example05.py illustrates this approach:

import subprocess

ls_output_raw = subprocess.check_output(['ls', '-l'])
ls_output_text = ls_output_raw.decode('UTF-8')

print(ls_output_text)

All modern system use the UTF-8 character encoding.

If you want to work through the output line by line then you may find it convenient to split your block of text
into its lines:

ls_output_lines = ls_output_text.splitlines()

8/14

This method automatically adapts for the line terminators on your particular system.


Exercise 5

Copy the script example01.py to exercise05.py and edit it to capture the
output as text. Split the text into lines and print all bar the first line in the list.

NB: Start from example01.py.

Like subprocess.call(), subprocess.check_output() does not return until the command is
finished. If it is going to generate a lot of text output you might want to get at it early. There are ways to do
that and we will see them when we run commands in the background.

Running programs in the background
Suppose we have a number of programs we want to run at the same time, each of which might take some
significant amount of time. We want to launch them all to run at the same time, in parallel, and then have the
script wait for all the background tasks to finish before it finishes itself.

!
Some of the examples in this section involve the output of two commands running
at the same time intermingling. If you don’t see exactly the same output as the
printed examples don’t be surprised. If you don’t see the expected behaviour at
all, try running the command again. If you persistently don’t see it, ask a
demonstrator.

To do this we replace subprocess.call() with a different function subprocess.Popen() (NB the
capital “P”) that launches the program but does not wait for it to finish before moving on to the next line of the
Python script. Obviously the function can’t give the function’s return code because the function hasn’t
completed yet. What it returns is a “handle” on the running process which we will examine in more detail
shortly.

Consider these two lines in example06.py:

alpha_rc = subprocess.call(['ls', '-l', 'alpha'])
beta_rc = subprocess.call(['ls', '-l', 'beta'])

These run “ls -l” on the alpha directory and then the beta directory:

$ python3 example06.py

total 0
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 alpha_01
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 alpha_02
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 alpha_03

 ...

-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 beta_97
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 beta_98
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 beta_99

$

Now compare them with the subprocess.Popen() equivalent lines in example07.py:

import subprocess

alpha_p = subprocess.Popen(['ls', '-l', 'alpha'])
beta_p = subprocess.Popen(['ls', '-l', 'beta'])

which runs the two ls processes at the same time, intermingling their outputs:

9/14

$ python3 example07.py

total 0
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 alpha_01
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 alpha_02

total 0
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 beta_01
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 alpha_03
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 alpha_04
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 beta_02
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 beta_03
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 alpha_05

...

$

...

-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 beta_98
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 alpha_99
-rw-rw-r--. 1 rjd4 rjd4 0 Oct 16 20:57 beta_99

Note also that the Unix system prompt, “$”, appears in the middle of the output. This indicates that the
Python script has finished before the two ls processes have!

Next we are going to arrange for the Python script to wait for the two ls processes (known as “child
processes”) to finish before it does.

The subprocess.Popen() function returns a handle on the running function, rather than the command’s
return code. We can use that handle to wait for the running process to come to an end. The handle is a
Python object with a method called “wait()” which pauses until the corresponding process completes. This
is called “waiting for your children to die” in the deliciously morbid Unix terminology.

The script example08.py extends example07.py to include two wait() calls:

import subprocess

alpha_p = subprocess.Popen(['ls', '-l', 'alpha'])
beta_p = subprocess.Popen(['ls', '-l', 'beta'])

alpha_rc = alpha_p.wait()
beta_rc = beta_p.wait()

This still causes the two runs of ls to intermingle but the Unix prompt (indicting the end of the script) does
not come back until they are both complete (and have been waited for).

A few notes on wait():

1. The wait() methods return the corresponding processes’ return codes. Now that the processes are
complete, this information is available and this is how it is passed over.

2. The subprocess.call() function can be thought of as a subprocess.Popen() immediately
followed by a call to the wait() method:

(i) rc = subprocess.call(…) → rc = subprocess.Popen.wait(…)

(ii) rc = subprocess.call(…) → process = subprocess.Popen(…)
rc = process.wait(…)

3. It doesn’t matter what order the wait() methods get called in, so long as all background processes
are waited for.

4. The wait() method pauses for the corresponding process to complete. If it has already completed
then wait() returns immediately. Child processes that have finished and are just hanging around
so that they can hand over their return codes to a wait() call are called “zombie processes”.

10/14


Exercise 6

Copy your script exercise04.py to exercise06.py and edit it to replace each
use of subprocess.call() with a call to subprocess.Popen() (recording
the process handle) immediately followed by a call to the wait() method on that
process handle.

This gives the pattern Popen()…wait()…Popen()…wait()… which is not
particularly useful in itself but sets us up for the next exercise.

What might go wrong if you had scripted Popen()…Popen()…wait()…
wait()…?

Piping programs together
To date, we have run commands with subprocess.call(), subprocess.check_output(), or
subprocess.Popen() and we have had to wait for the program to complete before moving on to the next
line of Python in the script. As a result, if we wanted to combine the iterator program (to generate some
numerical output) and the plot_iter program (to plot those points) we have to run iterator first to
generate the data file, and then run plot_iter to create the graph from the data file. If we wanted to leave
no trace of the intermediate data file we would have to explicitly remove it afterwards.

Now we are going to run the two commands in parallel (with subprocess.Popen()) and connect the
standard output of one with the standard input of the other. In Unix terminology this is called “piping” and the
connector we will build between the two running processes is called a “pipe”.

For our worked examples we will do something singularly pointless; we will take the output of ls and feed it
in as the input of wc. The exercises you do will connect iterator and plot_iter, which is far more
productive.

The script example09.py runs both ls and wc with a file as the interchange:

import subprocess

filename = 'interchange.dat'

Run ls

output_file = open(filename, 'w')
alpha_p = subprocess.Popen(['ls', '-l'], stdout=output_file)
alpha_rc = alpha_p.wait()
output_file.close()

Run wc

input_file = open(filename, 'r')
beta_p = subprocess.Popen(['wc'], stdin=input_file)
beta_rc = beta_p.wait()
input_file.close()

and works as expected:

$ python3 example09.py

 21 182 1139

$

Now, we will start work on eliminating the interchange file. We will convert from example09.py to
example10.py (which implements this) step-by-step.

We start by eliminating the lines that declare, open, or close the interchange file, of course.

Next, we turn to the run of ls where we need to declare that its output is to go to a pipe. There is a special
object in the subprocess module specifically for this purpose, subprocess.PIPE, and we declare the
standard output to be a pipe like this:

11/14

alpha_p = subprocess.Popen(['ls', '-l'], stdout=subprocess.PIPE)

Pipes have a very important property: they can fill up.

We are writing to a relatively small buffer. Because we have not started the wc process yet, nothing is
reading from (or “consuming”) the pipe. As soon as the pipe fills the process pauses, waiting for more room
to be made in the pipe. In example09.py we wait for the process to finish before we start wc, so this can
lead to what is called “deadlock”.

! Avoid deadlock: when a script pipes processes together it must not wait for any of
them until they are all started.

So we will move the line

alpha_rc = alpha_p.wait()

further down the script, below the line that launches wc.

Next, we need to tell the subprocess.Popen() that launches wc to get its standard input from the same
pipe as ls is writing to. We want its standard input to be ls’s standard output. We do this by using the
handle on the ls process, alpha_p, and asking it for its standard output, alpha_p.stdout:

beta_p = subprocess.Popen(['wc'], stdin=alpha_p.stdout)

This leaves us with the script example10.py:

import subprocess

Run ls & wc

alpha_p = subprocess.Popen(['ls', '-l'], stdout=subprocess.PIPE)
beta_p = subprocess.Popen(['wc'], stdin=alpha_p.stdout)

Wait for children to die

alpha_rc = alpha_p.wait()
beta_rc = beta_p.wait()

which runs in exactly the same way except that it does not create the intermediate file:

$ rm interchange.dat

$ python3 example10.py

 22 191 1196

$ ls interchange.dat

ls: cannot access interchange.dat: No such file or directory

$

More than one command joined together like this is called a “pipeline” and pipelines can have as many
commands string together as you want.


Exercise 7

Copy your script exercise06.py to exercise07.py and edit it to use a pipe
rather than an intermediate file.

12/14

Reading output from running processes
We have seen how to launch two (or more) programs and have them communicate. What we will look at next
is launching one program and reading its output from the Python script itself.

There is a program in your directory called collatz which runs essentially for ever, generating lines of
numerical output. Because this program never stops, we have to run it in the background. How can we read
its data?

The file example11.py demonstrates the approach we have to take. It reads in the first 10,000 lines of
output from a running process.

First, we have to launch it in the background, redirecting its standard output to a pipe:

collatz_p = subprocess.Popen(['./collatz'], stdout=subprocess.PIPE)

We treat process.stdout as a standard Python file object and read in lines from it, using the next()
function and converting the raw data into a text string:

line_raw = next(collatz_p.stdout)

line_txt = line_raw.decode('UTF-8')

In the example11.py script this sits inside a loop to do this 10,000 times.

!
If the ./collatz program never got as far as 10,000 lines of output, but never
closed its output either (e.g. by ending) then the script would hang waiting for
another line of output.

Future versions of Python 3 will have a timeout=… parameter to prevent this.

If our Python script simply took its 10,000 lines of data, did what it wanted to do and then quit it would leave
behind a running background process that never quits. Obviously, the Python script needs to kill off the
running collatz process. To do this, we introduce another method on the process handle, terminate():

collatz_p.terminate()

The terminate() method sends a “polite” request to the running process to shut down. Unless the process
has got stuck in some way this is typically sufficient. There is an alternative method, kill(), which is less
polite.


Exercise 8

Edit the script exercise08.py to read in 10,000 lines of input from a running
./collatz process and pass them to the plotting function provided.

Passing data into a background process
We have demonstrated how to pass command line arguments to the launched commands. We have seen
how to read data from launched commands’ standard outputs into our Python scripts. What we have not
looked at is how to send data from our Python scripts to a backgrounded process’ standard input.

To do this we will run a process (wc, the line/word/character counting program) whose standard input is
defined to be a pipe:

wc_proc = subprocess.Popen(['wc'], stdin=subprocess.PIPE)

and then writing lines of data to it with wc_proc.stdin.write().

Recall that when we were reading data from a process’s standard output we received raw data and had to
convert it to text by calling a decode('UTF-8') method. We have to do the inverse when we want to write
text to a process: we have to encode it into raw format before sending it on with an encode() method:

13/14

wc_proc.stdin.write(line.encode())

The file example12.py illustrates this process.

The write() call pauses (“blocks” in the technical vernacular) until the process is ready to read data.

!
If subprocess.Popen() is used with both standard input and standard output
set to be pipes that are both accessed from the script be very careful. This is a
recipe for deadlock.

14/14

	Prerequisites
	Facilities for this session
	Notation
	Warnings
	Exercises
	Exercise 0

	Input and output
	Keys on the keyboard
	Content of files
	What’s in this course
	Running a simple program
	Exercise 1

	Capturing the output in a file
	Exercise 2

	Reading the input from a file
	Exercise 3
	Exercise 4

	Capturing the output in a string
	Exercise 5

	Running programs in the background
	Exercise 6

	Piping programs together
	Exercise 7

	Reading output from running processes
	Exercise 8

	Passing data into a background process

