

Scientific computing:
An introduction to tools and
programming languages

what you need to learn now to decide
what you need to learn next“ ”

Bob Dowling
rjd4@cam.ac.uk
University Information Services

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts

Serial computing

Single CPU

Parallel computing

Multiple CPUs

Single
Instruction
Multiple
Data

MPI

OpenMP

Parallel computing courses

Parallel Programming:
Options and Design

Parallel Programming:
Introduction to MPI

Distributed computing

Multiple computers

Distributed computing courses

HTCondor and CamGrid

High Perfomance Computing course

High Performance Computing:
An Introduction

Floating point numbers
e.g. numerical simulations

Universal principles:
0.1 → 0.1000000000001
and worse…

>>> 0.1 + 0.1
0.2

>>> 0.1 + 0.1 + 0.1
0.30000000000000004

Floating point courses

Program Design:
How Computers Handle Numbers

Text processing

e.g. sequence comparison
text searching

^f.*x$

fabliaux
factrix
falx
faulx
faux
fax
feedbox
…
fornix
forty-six
fourplex
fowlpox
fox
fricandeaux
frutex
fundatrix

“Regular expressions”

Regular expression courses

Programming Concepts:
Pattern Matching Using Regular Expressions

Python 3:
Advanced Topics
(Self-paced)

(includes a regular
expressions unit)

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts

“Divide and conquer”
Complex
problem

Simple
problem

Less complex
problem

Partial
solution

Simple
problem

Simple
problem

Simple
problem

Simple
problem

Partial
solution

Partial
solution

Partial
solution

Partial
solution

Partial
solution

Complete
solution

“divide”

“conquer”

“glue”

“Divide and conquer” — the trick

Simple
problem

Partial
solution

Simple
problem

Simple
problem

Simple
problem

Simple
problem

Partial
solution

Partial
solution

Partial
solution

Partial
solution

“conquer”

No need to use the
same tool for each
“mini-conquest” !

Example

Read 256 lines of data represented in a CSV format. Each
line should have 256 numbers on it, but some are split into
two lines of 128 numbers each. Run Aardvark’s algorithm on
each 256×256 set of data. Write out the output as text in the
same CSV format (exactly 256 numbers per line, every line)
and plot a heat graph of the output to a separate file. Keep
reading 256-line lumps like this until they’re all done.

“

”

Example

Keep reading 256-line lumps like this until they’re all done.

Read 256 lines of data represented in a

Each line should have 256 numbers on it, but
some are split into two lines of 128 numbers each.

Run Aardvark’s algorithm on each 256×256 set of data.

Write out the
(exactly 256 numbers per line, every line)

output as text in the same CSV format

and plot a heat graph of the output to a separate file.

CSV format.

Example

Keep reading 256-line lumps like this until they’re all done.

Aardvark’s algorithm

256×256 set of data.

output

CSV format plot a heat graph

Read 256 lines of data

Each line will have 256 numbers on it.

CSV format.
Read

Process

Graphics
Write file

Repeat

CSV
Write file

“Structured programming”

Split program into “lumps”

Use lumps methodically

“Lumps” ?

Programs

Use lumps methodically

Functions

Modules

Units

Do not repeat code

Example: unstructured code

a_norm = 0.0
for i in range(0,100):

a_norm += a[i]*a[i]

b_norm = 0.0
for i in range(0,100):

b_norm += b[i]*b[i]

c_norm = 0.0
for i in range(0,100):

c_norm += c[i]*c[i]

…

…

Repetition !

Example: structured code

def norm2(v):
 v_norm = 0.0
 for i in range(0,100):
 v_norm += v[i]*v[i]
 return v_norm

a_norm = norm2(a)

b_norm = norm2(b)

c_norm = norm2(c)

…

…

Single instance
of the code.

Calling the function
three times

Structured programming

Once!

Write
function

Test
function

Time
function

Debug
function

Improve
function All good practice follows from

structured programming

Import
function

Example: improved code

def norm2(v):
 w = []
 for i in range(0,100):
 w.append(v[i]*v[i])
 w.sort()
 v_norm = 0.0
 for i in range(0,100):
 v_norm += w[i]
 return v_norm

a_norm = norm2(a)

b_norm = norm2(b)

c_norm = norm2(c)

…

…

Improved code

No change to
calling function

Example: improved again code

def norm2(v):
 w = [item*item for item in v]
 w.sort()

 v_norm = 0.0
 for w_item in w:
 v_norm += w_item
 return v_norm

a_norm = norm2(a)

b_norm = norm2(b)

c_norm = norm2(c)

…

…

Still no change to
calling function

More flexible,
“pythonic” code

Example: best code

from library import norm2

a_norm = norm2(a)

b_norm = norm2(b)

c_norm = norm2(c)

…

…

Somebody
else’s code!

No change to
calling function

Structured programming courses

Programming Concepts:
Introduction for Absolute Beginners

Libraries

Written by experts

In every area

Learn what
libraries exist
in your area

Use them

Save your effort
for your research

Example libraries

Scientific Python

Numerical Algorithms Group

Numerical Python

Hard to improve on library functions

for(int i=0; i<N, i++)
{
for(int j=0; j<P, j++)
{
for(int k=0; k<Q, k++)
{

a[i][j] += b[i][k]*c[k][j]

}
}
}

for(int j=0; j<P, j++)
{

for(int k=0; k<Q, k++)
{

This “trick” may save you 1%
on each matrix multiplication.

It is a complete waste of time!

Hard to improve on library functions

()()() A
11

A
21

A
12

A
22

B
11

B
21

B
12

B
22

C
11

C
21

C
12

C
22

=

M
1
=(A

11
+A

22
)(B

11
+B

22
)

M
2
=(A

21
+A

22
)B

11

M
3
=A

11
(B

12
B‒

22
)

M
4
=A

22
(B

21
B‒

11
)

M
5
=(A

11
+A

12
)B

22

M
6
=(A

21
‒A

11
)(B

11
+B

12
)

M
7
=(A

12
A‒

22
)(B

21
+B

22
)

C
11

=M
1
+M

2
‒M

5
+M

7

C
12

=M
3
+M

5

C
21

=M
2
+M

4

C
22

=M
1
‒M

2
+M

3
+M

6

Applied recursively: much faster

Algorithms

Size of dataset /
Required accuracy

Time taken /
Memory used

vs.

Algorithm selection makes or breaks programs.

O(n2) notation

Unit testing

Test each function individually

Test each function’s common use

“edge cases”

bad data handling

Catch your bugs early !

Extreme version: “Test Driven Development”

Revision control

Code “checked in” and “checked out”

Branches for trying things out

Communal working

Reversing out errors.

Revision control

Two main programs: subversion

git

Starting from scratch? git
Something in use already? Use it!

github.com

try.github.io

free repository (for open source)

free online training

Integrated Development Environment

“All in one” systems: necessarily quite complex

Eclipse Most languages

Qt Creator C++. JavaScript

Visual Studio C++. C#, VB, F#, …

NetBeans Java

XCode Most languages

make — the original build system

Command line tool

Dependencies

Build rules

Used behind the scenes by many IDEs

$ make target

target target.c

cc target.c -o target

Makefile

Building software courses

Unix:
Building, Installing and Running Software

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts

Specialist applications

Often no need to program

Or only to program simple snippets

All have pros and cons

Spreadsheets

Microsoft Excel

LibreOffice Calc

Apple Numbers

Spreadsheets

Taught at school Taught badly at school!

Easy to tinker Easy to corrupt data

Easy to get started Hard to be systematic

Very hard to debug

Example:
Best selling book,
buggy spreadsheets!

Excel courses

Excel 2010/2013:

Introduction
Analysing and Summarising Data
Functions and Macros
Managing Data & Lists

Statistical software

Statistical software

Stata: Introduction

R: Introduction for Beginners

SPSS: Introduction for Beginners

SPSS: Beyond the Basics

Mathematical manipulation

Matlab

Mathematica

Octave

Mathamtical software courses

Matlab:

Introduction for Absolute Beginners
Linear Algebra
Graphics (Self-paced)

Drawing graphs

Manual or automatic?

Courses for drawing graphs

Python 3:
Advanced Topics
(Self-paced)

(includes a
matplotlib unit)

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts

Computer languages
Interpreted Compiled

Shell
script

C,C++,
Fortran

Perl JavaPython

What the
system
sees

What
you do

What
files get
created

Untyped Typed

Shell script

Suitable for…

gluing programs together

“wrapping” programs

small tasks

Easy to learn

Very widely used

Unsuitable for…

performance-
critical jobs

floating point

GUIs

complex tasks

Shell script

#!/bin/bash

job="${1}"
…

Several “shell” languages:

/bin/sh /bin/csh

/bin/bash

/bin/tcsh/bin/ksh

/bin/zsh

/bin/sh

Shell scripting courses

Unix:

Introduction to the Command Line Interface
(Self-paced)

Simple Shell Scripting for Scientists

Simple Shell Scripting for Scientists
— Further Use

“Further shell scripting”?

Python!

✘

✔

High power scripting languages

Python

Perl

#!/usr/bin/python

import library
…

#!/usr/bin/perl

use library;
…

Both can call out to libraries
written in other languages.

Both have extensive
libraries of utility functions.

Perl The “Swiss army knife” language

Suitable for…

text processing

data pre-/post-processing

small tasks

CPAN: Comprehensive
Perl Archive Network

Widely used

Bad first language

Very easy to write
unreadable code

“There's more than
one way to do it.”

Beware Perl geeks

Python “Batteries included”

Suitable for…

text processing

data pre-/post-processing

small & large tasks

Built-in comprehensive
library of functions

Scientific Python library

Excellent first
language

Easy to write
maintainable code

The “Python way”

Code nesting style
is “unique”

Very widely used

Python courses

Python 3:
Introduction for Absolute Beginners

Python 3:
Further Topics
(self paced)

Python 3:
Introduction for Those with
Programming Experience

Compiled languages

No specialist
system and
scripts are not
fast enough

Library
requirement
with no script
interface

C

C++

Fortran

Java

Compiled
language

Use only as
a last resort

Compiling, linking, running

source code files

object files

executable

execution

fubar.c

main()
pow()
zap()

snafu.c

pow()
zap()
printf()

compilation

linking

run-time

fubar.o

main()
pow()
zap()

snafu.o

pow()
zap()
printf()

text files

machine code files

fubar

main()
pow()
zap()
printf()

fubar

machine code file

libc.so.6

…
printf()
…

No need to compile whole program

Python
script

Critical
function

No need to write the whole
program in a compiled language

Python
script

Python
module

function.c

C, C++ or
Fortran

SWIG

function.f
f2py

Fortran

The best for numerical work

Excellent numerical libraries

Unsuitable for everything else

Very different versions:
77, 90, 95, 2003

Fortran course

Fortran:
Introduction to Modern Fortran

Three full days

C

Excellent libraries

Superceded by C++ for applications

The best for Unix (operating system) work

Memory management

C++

Standard template library

Very hard to learn well

Extension of C

Object oriented

General purpose language

C++ books

“Thinking in C++, 2nd ed.”

Eckel, Bruce (2003)
(two volumes: 800 and 500 pages!)

“Programming: principles
and practice using C++”

Stroustrup, Bjarne (2008)
harder but better for scientific computing

From the intro to Stroustrup’s book

“How long will [leaning C++ from scratch
using this book] take? …
maybe 15 hours a week for 14 weeks.”

C++ course

C++:
Programming in Modern C++

12 lectures, 3 terms,
significant homework

Uses Stroustrup’s book

Java

Some poorly thought out libraries

Multiple versions: Use >= 1.6
1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7

Object oriented

General purpose language

Much easier to learn and use than C++

Java courses

Object oriented programming CL lectures

(also classes,
ask at the CL)

Scientific Computing

training.cam.ac.uk/ucs/theme/scientific-comp

scientific-computing@ucs.cam.ac.uk

www.ucs.cam.ac.uk/docs/course-notes/unix-courses

