

Version: 2019-02-26 1

Simple Shell Scripting for
Scientists

David McBride
Ben Harris

University of Cambridge Information Services

Day Four

Version: 2019-02-26 2

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 2

Introduction
• Who:

 David McBride, Unix Support, UIS
 Ben Harris, Unix Support, UIS

 Bruce Beckles, e-Science Specialist, UIS

• What:
 Simple Shell Scripting for Scientists course, Day Three
 Part of the Scientific Computing series of courses

• Contact (questions, etc):
 scientific-computing@uis.cam.ac.uk

• Health & Safety, etc:
 Fire exits

• Please switch off mobile phones!

As this course is part of the Scientific
Computing series of courses run by the
University Information Services, all the
examples that we use will be more relevant to
scientific computing than to system
administration, etc.

This does not mean that people who wish to
learn shell scripting for system administration
and other such tasks will get nothing from this
course, as the techniques and underlying
knowledge taught are applicable to shell
scripts written for almost any purpose.
However, such individuals should be aware
that this course was not designed with them in
mind.

mailto:scientific-computing@uis.cam.ac.uk

Version: 2019-02-26 3

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 3

We finish at:

17:00
The course officially finishes at 17.00, so don't expect to
finish before then. If you need to leave before 17.00
you are free to do so, but don’t expect us to have
covered all today's material by then. How quickly we
get through the material varies depending on the
composition of the class, so whilst we may finish early
you should not assume that we will.

If you do have to leave early, please leave quietly and
please make sure that you fill in a green Course
Review form and leave it at the front of the class for
collection by the course giver.

Version: 2019-02-26 4

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 4

What we don’t cover
• Different types of shell:

 We are using the Bourne-Again SHell
(bash).

• Differences between versions of bash
• Very advanced shell scripting – try

one of these courses instead:
 “Python 3: Introduction for Absolute Beginners”
 “Python 3: Introduction for Those with

Programming Experience”

bash is probably the most common shell on modern Unix/Linux
systems – in fact, on most modern Linux distributions it will be the
default shell (the shell users get if they don’t specify a different one).
Its home page on the WWW is at:

https://www.gnu.org/software/bash/

We will be using bash 4.4 in this course, but everything we do should
work in bash 2.05 and later. Version 4, version 3 and version 2.05 (or
2.05a or 2.05b) are the versions of bash in most widespread use at
present. Most recent Linux distributions will have one of these
versions of bash as one of their standard packages. The latest
version of bash (at the time of writing) is bash 5.0, which was
released in January 2019.

For details of the “Python 3: Introduction for Absolute Beginners”
course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-python

For details of the “Python 3: Introduction for Those with Programming
Experience” course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-python4progs

http://www.gnu.org/software/bash/
http://www.gnu.org/software/bash/
http://www.training.cam.ac.uk/ucs/course/ucs-python
http://www.training.cam.ac.uk/ucs/course/ucs-python4progs
http://www.training.cam.ac.uk/ucs/course/ucs-python4progs

Version: 2019-02-26 5

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 5

Related course

Unix Systems: Further Commands:
More advanced Unix/Linux

commands you can use in your
shell scripts

Course discontinued (due to lack of
demand) but course notes still
available on-line

For the course notes from the “Unix Systems: Further
Commands” course, see:

https://help.uis.cam.ac.uk/help-support/training/downloads/
course-files/programming-student-files/commands

http://www-uxsup.csx.cam.ac.uk/courses/Commands/

Version: 2019-02-26 6

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 6

Outline of Course
1. Recap of days one, two & three
2. Variable indirection
3. local

4. source

SHORT BREAK
5. Manipulating filenames
6. More sophisticated use of shell variables
7. Patterns
8. Is it an integer or a number?

SHORT BREAK
9. case

SHORT BREAK
10. Lists of commands: ;, &&, ||

11. Combining tests in if statements

The course officially finishes at 17.00, but the
intention is that the lectured part of the course will
be finished by about 16.30 or soon after, and the
remaining time is for you to ask questions about
anything that is still puzzling you. If you need to
leave before 17.00 (or even before 16.30), please
do so, but don’t expect the course to have finished
before then.

Before the end of today's session, please
make sure that you fill in the Course Review form
online, accessible under “feedback” on the main
MCS Linux menu, or via:

 http://feedback.training.cam.ac.uk/uis/

Version: 2019-02-26 7

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 7

Start a shell

As this is a shell scripting course, we are going to need to
interact with the Unix shell.
To start a shell, click on “Activities” in the top-left corner of
the screen, then click on the “Terminal” icon in the
desktop application bar.
A Terminal window will then appear.

Version: 2019-02-26 8

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 8

Recap: Days One, Two & Three
• Shell scripts as linear lists of commands
• Simple use of shell variables and parameters
• Simple command line processing
• Shell functions
• Pipes and output redirection
• Accessing standard input using read
• for and while loops
• Tests
• Command substitution and (integer) arithmetic expansion
• The mktemp command
• if statement
• Error handling (including standard error and set -e,
set +e)

• exit and return to quit scripts and functions

Version: 2019-02-26 9

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 9

if…then…else
Do something only if some command is true,

else (i.e. if the command is false) do
something else.

if <command> ; then
<some commands>

else
<some other commands>

fi

We can decide whether a collection of commands should be executed
using an if statement. An if statement executes a collection of
commands if and only if the result of some command or test is true.
(Recall that the result of a command is considered to be true if it
returns an exit status of 0 (i.e. if the command succeeded)).

As well as deciding whether a collection of commands should be
executed at all, we can also decide whether one or other of two
collections of commands should be executed using a more advanced
form of the if statement. If there is an else section to an if
statement the collection of commands in the else section will be
executed if and only if the given <command> is false. Note the
syntax above. (Note that we don’t have to have an else section; it is
completely optional.)

Note that even if set -e is in effect, or the first line of our shell script
is

#!/bin/bash -e

the shell script will not exit if the result of the command or test the if
statement depends on is false (i.e. it returns a non-zero exit status),
since if it did, this would make if statements fairly useless(!).

Version: 2019-02-26 10

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 10

Nested ifs
Do something only if some expression is true,

else do another thing if another expression is
true…and so on

if <command1> ; then
<some commands>

elif <command2> ; then
<some other commands>

elif <command3> ; then
<yet other commands>

…
else

<other commands>
fi

We can have even more complicated if statements than the simpler
if…then…else form shown on the previous slide. We can nest if
statements: if one command (or test) is true, do one thing, if a different
command (or test) is true do something else and so on, culminating in an
optional else section (“if none of the previous expressions were true, do
this”).

One of the easiest ways of doing this is by using elif (short for else if)
for all the alternative expressions we want to test.

Why would we do this? Imagine that we had a shell script that could do
several different things and the decision as to which it should do was made
by the user specifying different arguments on the command line. We might
want our script to have the following logic: if the user said “a” do this, else if
they said “b” do that, else if they said “c” do something else, and so on,
ending with else if they said something that was none of the previous things
say “I don’t know what you are talking about”.

There are better ways to do that than using this sort of if statement which
involve a construct (case) and a shell builtin command (shift) that we will
cover later today.

Version: 2019-02-26 11

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 11

More tests (1)
Test to see if something is true:

[<expression>]

or: test <expression>

where <expression> can be any of a
number of things such as:

[-z "a"]
["a" = "b"]
[-e "filename"]

As well as the (integer) arithmetic tests we met on the second day of the course,
there are a number of other tests we can do. They fall into two main categories:
tests on files and tests on strings. There are many different such tests and we
only list a few of the most useful below:

–z "a" true if and only if a is a string whose length is zero

"a" = "b" true if and only if the string a is equal to the string b

"a" == "b" true if and only if the string a is equal to the string b

"a" != "b" true if and only if the string a is not equal to the string b

–d "filename" true if and only if the file filename is a directory

–e "filename" true if and only if the file filename exists

–h "filename" true if and only if the file filename is a symbolic link

–r "filename" true if and only if the file filename is readable

–x "filename" true if and only if the file filename is executable

You can often omit the quotation marks but it is good practice to get into the habit
of using them, since if the strings or file names have spaces in them then not
using the quotation marks can be disastrous. (Note that string comparison is
always done case sensitively, so “HELLO” is not the same as “hello”.)

You can get a complete list of all the tests by looking in the CONDITIONAL
EXPRESSIONS section of bash’s man page (type “man bash” at the shell
prompt to show bash’s man page.)

Version: 2019-02-26 12

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 12

More tests (2)
We can negate an expression, i.e. test to see whether the

expression was false, using ! thus:

[! <expression>]
or: test ! <expression>

The above are true if and only if <expression> is false, e.g.

[! -z "a"]
is true if and only if a is a string whose length is not zero.

We can also use ! with a command in an if statement or
while loop to mean only do whatever the if or while is
supposed to do if the command fails (i.e. its exit status is
not 0).

Recall that in a while loop or an if statement we can use commands as well as tests. The
command is considered true if it succeeds, i.e. its exit status is 0. In a while loop or an if
statement we can negate a command in exactly the same way we negate <expression>,
using ! – negating a command means that the while loop or if statement will only consider
it true if the command fails, i.e. its exit status is non-zero.

So:

while ! ls datafile ; do

echo "Can't list file datafile!"

done

…would print the string “Can't list file datafile!” on the screen as long as ls was
unable to list the file datafile, i.e. as long as the ls command returns an error when it tries
to list the file datafile (for instance, if the file didn’t exist).

Similary:

if ! ./infect.py ; then

echo "Unable to run ./infect.py successfully"

fi

…will only print the message “Unable to run ./infect.py successfully” if the
infect.py program in the current directory returns a non-zero exit status (i.e. it fails for
some reason).

Version: 2019-02-26 13

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 13

Standard Error (2)
To redirect standard error to a file we use

the following construct:

command 2> file

To send the output of a command to
standard error, we use the following
construct:

command >&2

Standard output is one of the standard streams that all programs (whether they are
shell scripts or not) have. (The idea of a stream here is that there is a “stream” of
data flowing to/from our program and to/from somewhere else, like the screen.)
Another standard stream that we have already met is standard input (which by
default comes from the keyboard unless we redirect it).

There is actually a third standard stream called standard error. Like standard
output, this is an “output stream” – data flows from our program along this stream to
somewhere else. This stream is not for ordinary output though, but for any error
messages our program may generate (and by default it also goes to the screen).

Why have two output streams? The reason is that this allows error messages to be
easily separated from a program’s output, e.g. for ease of debugging, etc.

Note that when using standard error there is no space between the “2” and the “>”
or the “>” and the “&2”, i.e.

it is “2>” not “2 >”

and “>&2” not “> &2” or “> & 2”

This is very important – if you put erroneous space characters in these constructs,
the shell will not understand what you mean and will either produce an error
message, or worse, do the wrong thing.

For more information on standard error and the other standard streams (standard
input and standard output) see the following Wikipedia article:

https://en.wikipedia.org/wiki/Standard_streams

Version: 2019-02-26 14

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 14

set -e, set +e
Abort shell script if an error occurs:

set -e

Abort shell script only if a syntax error is
encountered (default):

set +e

We already know that if the first “magic” line of our shell script is:

#!/bin/bash -e

then the shell script will abort if it encounters an error. We also know we
can make this happen by using set -e instead, if we prefer.

Sometimes though, we may want to handle errors ourselves, rather than just
having our shell script fall over in a heap. So it would be nice if we could
turn this behaviour off and on at the appropriate points in the shell script,
and bash provides a mechanism for us to do just that:

• As we know, set -e tells the shell to quit when it encounters an error
in the shell script. Whenever you are not doing your own error handling
(i.e. checking to make sure the commands you run in your shell script
have executed successfully), you should use set -e.

• set +e returns to the default behaviour of continuing to execute the
shell script even after an error (other than a syntax error) has occurred.

A good practice to get into is to always have the following as the first line of
your shell script that isn’t a comment (i.e. doesn’t start with a #):

set -e

and then to turn this behaviour off only when you are actually dealing with
the errors yourself.

Version: 2019-02-26 15

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 15

exit
To stop executing a shell script:

exit

…can explicitly set an exit status thus:

exit value

The exit shell builtin command causes a shell script to exit (stop
executing) and can also explicitly set the exit status of the shell script
(if you specify a value for the exit status).

Recall that the exit status is an integer between 0 and 255, and should
be 0 only if the script was successful in what it was trying to do. If the
script encounters an error it should set the exit status to a non-zero
value.

If you don’t give exit an exit status then the exit status of the shell
script will be the exit status of the last command executed by the script
before it reached the exit shell builtin command.

(If you don’t have a exit shell builtin command in your shell script,
then your script will exit when it executes its last command. In this
case its exit status will be the exit status of the last command executed
by your script.)

Version: 2019-02-26 16

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 16

return
Just like programs and shell scripts have an exit status, so too do

shell functions (although it is unwise to try and make significant
use of these). We can set the exit status of a function using the
return shell builtin command, and when we use return we
should always explicitly set the exit status (normally to 0).

To stop executing a function and safely return
to wherever we were called from, use:

return 0

…we can set a non-zero exit status as we exit
the function thus (where value is between 1
and 255):

return value

The return shell builtin command causes a shell function to stop
executing and return control to whatever part of the shell script called
it. It can also explicitly set the exit status of the function, and when
we use return we should explicitly set the status (normally to 0).

As with ordinary programs and shell scripts themselves, the exit
status of a shell function is an integer between 0 and 255, and, as
one might expect, the convention is that the exit status should be 0
only if the function was successful in what it was trying to do.
Unfortunately, if the function returns a non-zero exit status, this can
cause very subtle (i.e. difficult to track down) types of misbehaviour,
so it is actually safest to always use return with an exit status of 0
(i.e. “return 0”).

(If you don’t give return an exit status then the exit status of the shell
function will be the exit status of the last command executed by the function
before it reached the return shell builtin command, but this can lead to
extremely subtle types of misbehaviour – use “return 0” instead.

And if you don’t have a return shell builtin command in your shell function,
then your function will exit when it executes its last command. In this case its
exit status will be the exit status of the last command executed in your
function – this can also cause subtle problems, so your functions should really
always end with “return 0”.)

Version: 2019-02-26 17

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 17

Problems with set -e
#!/bin/bash
set -e

function fail()
{

This function should always cause the script
to exit with a non-zero exit status
echo "In function ${FUNCNAME}."
set -e
false
echo "You should never see this message."

}

echo "About to run function fail."
if fail ; then

echo "Woo-hoo! Function fail succeeded."
else

echo "Nooooo! Function fail didn't work."
fi

$ cd
$ examples/function-should-exit.sh

There are subtle problems with set -e we need to be aware
of, particularly where functions are concerned. For an
example of this, see the function-should-exit.sh script
in the examples subdirectory (shown on the slide above).

We might expect that, because we use set -e within the
function fail, when we run that function it will cause the
script to exit. However, because we run the function as the
command checked by an if statement, this doesn't happen!
(We would have the same problem if we ran the function as
the command checked by a while loop.)

Basically, if you run a shell function as the command checked
by an if statement or a while loop, set -e is disabled
whilst the function is running, even if you explicitly use it within
the function. This makes using shell functions as the
command checked by an if statement or a while loop
extremely dangerous, so we advise you not to do it.

Version: 2019-02-26 18

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 18

Recap: What are we trying to do?

Scientific computing

i.e. shell scripts that do
some useful scientific
work, e.g. repeatedly
running a simulation
or analysis with different data

Recall the name of this course (“Simple Shell Scripting for Scientists”)
and its purpose: to teach you, the scientist, how to write shell scripts that
will be useful for your scientific work.

As mentioned on the first day of the course, one of the most common
(and best) uses of shell scripts is for automating repetitive tasks. Apart
from the sheer tediousness of typing the same commands over and over
again, this is exactly the sort of thing that human beings aren’t very good
at: the very fact that the task is repetitive increases the likelihood we’ll
make a mistake (and not even notice at the time). So it’s much better to
write (once) – and test – a shell script to do it for us. Doing it via a shell
script also makes it easy to reproduce and record what we’ve done, two
very important aspects of any scientific endeavour.

So, the aim of this course is to equip you with the knowledge and skill
you need to write shell scripts that will let you run some program (e.g. a
simulation or data analysis program) over and over again with different
input data and organise the output sensibly.

Version: 2019-02-26 19

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 19

A sample program: zombie.py
$./zombie.py 0.005 0.0175 0.01 0.01 500

When Zombies Attack!: Basic Model of outbreak of zombie infection

Population size: 5.0000e+05

Model run time: 1.0e+01 days

Zombie destruction rate (alpha): 5.000000e-03

Zombie infection rate (beta): 1.750000e-02

Zombie resurrection rate (zeta): 1.000000e-02

Natural death [and birth] rate (delta): 1.000000e-02

Output file: zombie.dat

Model took 7.457018e-02 seconds

A lot of the scripts in this course have made use of the zombie.py
program is in your home directory (although the final exercise of the
previous day introduced a new program, infect.py). zombie.py is a
program written specially for this course, but we’ll be using it as an
example program for pretty general tasks you might want to do with many
different programs. Think of zombie.py as just some program that takes
some input on the command line and then produces some output (on the
screen, or in one or more files, or both), e.g. a scientific simulation or data
analysis program.

The zombie.py program takes 5 numeric arguments on the command
line: 4 positive floating-point numbers and 1 positive integer. It always
writes its output to a file called zombie.dat in the current working
directory, and also writes some informational messages to the screen.

The zombie.py program is not as well behaved as we might like (which,
sadly, is also typical of many programs you will run). The particular way
that zombie.py is not well behaved is this: every time it runs it creates a
file called running-zombie in the current directory, and it will not run if
this file is already there (because it thinks that means it is already
running). Unfortunately, it doesn’t remove this file when it has finished
running, so we have to do it manually if we want to run it multiple times in
the same directory.

Version: 2019-02-26 21

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 21

Exercise from Day Three
In your home directory is a program called infect.py, which is a simulation of the
spread of infection in a closed population using a variant of the SIR model used in
epidemiology. It prints its output (which are points on various graphs) to standard output
and sends information about the parameters it has used to standard error. infect.py
takes three floating point command line arguments and one integer command line
argument. (It can also optionally take another three command line arguments (one floating
point number, two integers) but we won’t make use of those.)

In the gnuplot subdirectory there is a file of gnuplot commands called infect.gplt
that can be used to plot the data produced by infect.py – the commands in this file
expect their input to be in a file called infect.dat in the current directory, and they
produce a PNG file called infect.png (also in the current directory).
Write a shell script that will read the first three parameters for infect.py from standard
input and the fourth parameter from the command line. It should run the infect.py
program, turning its output into a graph using gnuplot. The following should illustrate
how to combine the parameters from these two sources – suppose you read the
following values from standard input:

 1.0 0.1 0.0005 70
 2.0 0.1 0.0005 250

…and the values 100 800 from the command line, then your script should run:
./infect.py 1.0 0.1 0.0005 100
./infect.py 1.0 0.1 0.0005 800
./infect.py 2.0 0.1 0.0005 100
./infect.py 2.0 0.1 0.0005 800

The point of this exercise was to consolidate everything you’ve learnt over the
previous three days of this course. To that end you should have written your
own shell script FROM SCRATCH for this exercise and not just taken one of
the ones we’d already constructed over this course and changed the names of
the programs it runs. Whilst you could certainly get an answer to this exercise
that way, you wouldn’t learn very much.

Also, you should have made your shell script as good a shell script as you
could possibly make it – so it should:

 be well structured using shell functions,

 be fully commented,

 do some error handling,

 keep a log file of what it is doing,

 print its error messages on standard error,

 use a temporary directory for working in,

 do some checking of its input,

 etc

There is a file in the scripts subdirectory called infect_params that you
can use as a source of parameters to read via standard input. It was
suggested that for the command line arguments you use:

75 100 300 3000 50000

Version: 2019-02-26 22

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 22

Let’s take a closer look… (1)
$./infect.py
Wrong number of arguments!
4 required, 0 found.
Usage: ./infect.py infect recovery birth size

$ INFECT_FORMAT="NORMAL" ./infect.py 1.0 0.1 0.0005 50
 0.000000 5.000000 1.000000 44.000000

 0.000000 5.000000 1.000000 44.000000

 0.000000 4.000000 2.000000 44.000000

…
Per capita birth [and death] rate (mu): 0.0005

Model took 0.002 seconds

$ INFECT_FORMAT="NORMAL" ./infect.py 1.0 0.1 0.0005 50 >infect.dat 2>info

$ gnuplot infect.gplt
$ ls infect.* info
infect.dat infect.gplt infect.png infect.py info

$ eog infect.png &

The infect.py program, which is located in your home
directory, takes 4 numeric arguments (3 floating point numbers
and 1 integer). infect.py always writes its output to standard
output (which by default will be the screen) and some
informational messages to standard error (which by default will
also be the screen).

The instructions (in infect.gplt in your home directory) that
we give to gnuplot, the program which we use to turn
infect.py’s output into a graph, expect infect.py’s output
to be in a file called infect.dat. So we need to arrange that
infect.py’s output is redirected to a file called infect.dat.
Running gnuplot will then produce a graphics file called
infect.png. We also want to keep a copy of the informational
messages infect.py writes to standard error, so we need to
arrange that standard error is redirected to a file as well.

Please note that the output of the ls command may not exactly match what is shown
on this slide – in particular, the colours may be slightly different shades.

Version: 2019-02-26 23

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 23

Let’s take a closer look… (2)

Version: 2019-02-26 24

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 24

Plan of action
What we want to do is:
1. Run infect.py with some parameters, capturing its output

to infect.dat, and the messages it writes to standard
error to info-param1-param2-param3-param4

$ INFECT_FORMAT="NORMAL" ./infect.py 1.0 0.2
0.1 30 >infect.dat 2>info-1.0-0.2-0.1-30

2. Run gnuplot with infect.gplt file
$ gnuplot infect.gplt

3. Rename created files (infect.dat, infect.png)
$ mv infect.dat infect-1.0-0.2-0.1-30.dat
$ mv infect.png infect-1.0-0.2-0.1-30.png

4. Repeat the above steps for all the parameter sets…
5. Checking our input (where we can) to make sure it is

sensible before running infect.py, and…
6. Handling errors properly.

So for this exercise you needed to create a shell script that
basically did the above task. When writing a shell script that is at
all complicated, it is best to first plan it out, and one way of doing
that is to describe what the shell script should do as a numbered
list.

Basically, we want to run the infect.py program several times
with a different parameter set each time, plotting its output on a
graph each time. After each run, we rename the files we’ve
created so that they don’t get overwritten.

Steps 1-3 can be straightforwardly achieved by writing a shell
function that runs infect.py, then gnuplot, and then renames
the files that have been created.

For step 4 we loop through the parameter sets. This is slightly
more complicated than simply using a single loop since one of
the parameters comes from standard input and the other from the
command line. For step 5 we improve our shell script so that it
checks its command line arguments. For step 6 we further
improve our shell script to do some sensible error handling.

Version: 2019-02-26 25

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 25

1-3: Function to run infect.py
#!/bin/bash
set -e

function run_program()
{

…
Run program with passed arguments
"${myPROG}" "${@}" >infect.dat 2>"info-${1}-${2}-${3}-${4}"

Run gnuplot
gnuplot "${myGPLT_FILE}"

…
Rename files
mv infect.dat "infect-${1}-${2}-${3}-${4}.dat"
mv infect.png "infect-${1}-${2}-${3}-${4}.png"

…
Write to logfile
echo "Output: infect-${1}-${2}-${3}-${4}.dat" >> "${myLOGFILE}"
echo "Plot of output: infect-${1}-${2}-${3}-${4}.png" >> "${myLOGFILE}"
echo "Parameter information: info-${1}-${2}-${3}-${4}" >> "${myLOGFILE}"

return 0
}

…
Program to run: infect.py
myPROG="$(pwd –P)/infect.py"

Set up environment variables for program
export INFECT_FORMAT="NORMAL"

Location of gnuplot file
myGPLT_FILE="$(pwd –P)/infect.gplt"

…

If you examine the multi-infect.sh script in the scripts
subdirectory of your home directory, you will see that it contains a
run_program function that runs infect.py, capturing its
output to infect.dat and its informational messages (written to
standard error) to another file named after the parameters that
were given to infect.py. It then runs gnuplot. Then it
renames infect.dat and infect.png after the parameters
that were given to infect.py. (i.e. run_program carries out
steps 1-3 of our plan.)

You should be able to tell what the run_program function (some
highlighted parts of which are shown above) does – if there is
anything you don’t understand, or if you had any difficulty with this
part of the exercise, please let the course giver or demonstrator
know.

(Although not shown on the slide above, inspection of the rest of
the multi-infect.sh script should show you that the script
defines the shell variable myLOGFILE before it calls the
run_program function.)

Version: 2019-02-26 26

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 26

4: Repeat for all parameter sets
#!/bin/bash
set -e

…
Read in parameters from standard input
and then run program with them
and run it again and again until there are no more
while read myI myR myB mySIZE myJUNK ; do

Instead of using read in value for size,
cycle through command line arguments.
for zzSIZE in "${@}" ; do

Run program
run_program "${myI}" "${myR}" "${myB}" "${zzSIZE}"

done
done

…

Now examine the main body of the multi-infect.sh script in the scripts
subdirectory of your home directory, and you will see that it contains a while loop that
reads in parameters from standard input. Inside the while loop is a for loop which
cycles through the command line arguments.

Recall that the exercise asked you to construct a shell script in which the first three
parameters for infect.py came from standard input and the last parameter came
from the command line, with the command line parameters being used with each of the
parameters read in on standard input.

You should be able to tell what all the highlighted parts of the shell script above do, and
you should be able to see why they work as a sequence of commands to carry out this
step of the plan for our shell script – if there is anything you don’t understand, or if you
had any difficulty with this part of the exercise, please let the course giver or a
demonstrator know.

You can test that this script works by doing the following:
$ cd

$ rm –f *.dat *.png info* logfile

$ cat scripts/infect_params | scripts/multi-infect.sh 75 100 300 3000 50000

$ ls

You should see that a number of PNG and .dat files have been produced. You could
view some of the PNG files to make sure they were what was expected by using Eye of
GNOME (eog) or another PNG viewer (such as Firefox).

Version: 2019-02-26 27

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 27

5: Remember to check our input…
#!/bin/bash
set -e

…
Make sure our command line arguments are okay before continuing
if [-z "${1}"] ; then

echo "Invalid argument or no arguments given." >&2
echo "This script takes one or more population sizes as its arguments." >&2
echo "It requires at least one argument." >&2
exit 1

fi

Temporary directory for me to work in
myTEMP_DIR="$(mktemp -t -d infect.XXXXXXXXX)"

…
Read in parameters from standard input
and then run program with them
and run it again and again until there are no more
while read myI myR myB mySIZE myJUNK ; do

…

Recall that the exercise asked you to check your script’s input. In this
particular case, since we don’t know what restrictions infect.py places
on its parameters (other than the fourth one must be an integer), we’ll just
check that we have gotten some command line arguments, since if we
haven’t the script won’t do anything.

You should be able to tell what all the highlighted part of the
multi-infect.sh shell script (in the scripts subdirectory) above do,
and you should be able to see why it will check whether or not the shell
script got any command line arguments – if there is anything you don’t
understand, or if you had any difficulty with this part of the exercise, please
let the course giver or a demonstrator know.

…and a reminder that you can test that this script works by doing the following:

$ cd

$ rm –f *.dat *.png info* logfile

$ cat scripts/info_params | scripts/multi-infect.sh 75 100 300 3000 50000

$ ls

…and examining the files produced.

Version: 2019-02-26 28

The exercise also wanted your script to do some error handling, which
multi-infect.sh doesn’t really do. Inspect the run_program function in
the multi-infect-errors.sh script in the scripts subdirectory of your
home directory, paying particular attention to the bits of the script highlighted
above.

You should be able to work out what the highlighted bits (above) of the function
are doing. (Recall that the exit status of the last command that ran is stored in
the special shell parameter ? and that the test -e "filename" returns true if
and only if the file filename exists.)

Observe that the logic of this function is that if the infect.py program failed
there’s no point running gnuplot (“garbage in, garbage out”). We need to look
a bit further down the function’s definition (not shown above) to see what it does
if gnuplot fails. Can you work out what it is doing (and why)?

Also note that we make sure we rename the infect.dat file (if it exists) even
if infect.py fails, since we might well want to inspect the output of a failed
run.

If you are not sure, or you have any questions, please ask the course giver or a
demonstrator.

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 28

6: Add some error handling… (1)
#!/bin/bash
set -e

…
function run_program()
{

…
Run program with passed arguments
set +e
"${myPROG}" "${@}" >infect.dat 2>"info-${1}-${2}-${3}-${4}"
myPROG_ERR="${?}"
set -e

Run gnuplot only if the program succeeded
if ["${myPROG_ERR}" -eq "0"] ; then

set +e
gnuplot "${myGPLT_FILE}"
myGPLT_ERR="${?}"
set -e

else
myBAD_PARAM="1"
if [-e "infect.dat"] ; then

mv infect.dat "infect-${1}-${2}-${3}-${4}.dat"
fi
echo "Failed! Exit status: ${myPROG_ERR}" >> "${myLOGFILE}"
return 0

fi

…

Version: 2019-02-26 29

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 29

6: Add some error handling… (2)
#!/bin/bash
set -e

…
while read myI myR myB mySIZE myJUNK ; do

Instead of using read in value for size,
cycle through command line arguments.
for zzSIZE in "${@}" ; do

Assume parameter set will work
myBAD_PARAM="0"

Run program
run_program "${myI}" "${myR}" "${myB}" "${zzSIZE}"

Report if there were problems
if ["${myBAD_PARAM}" -eq "0"] ; then

true
elif ["${myBAD_PARAM}" -eq "1"] ; then

echo "${myPROG} had a problem with parameter set: ${myI} ${myR} ${myB} ${zzSIZE}" >&2
elif ["${myBAD_PARAM}" -eq "2"] ; then

echo "gnuplot had a problem with parameter set: ${myI} ${myR} ${myB} ${zzSIZE}" >&2
else

echo "Problem with parameter set: ${myI} ${myR} ${myB} ${zzSIZE}" >&2
fi

done
done

…

Now inspect the main body of the
multi-infect-errors.sh script in the scripts
subdirectory of your home directory, paying particular
attention to the bits of the script highlighted above. You
should be able to work out why we’ve changed it like this,
what it does and why it works.

If you have any questions, or there’s anything you don’t
understand, please ask the course giver or a demonstrator.

You can test this script works by doing the following:
$ cd

$ rm –f *.dat *.png info* logfile

$ cat scripts/infect_params | scripts/multi-infect-errors.sh 75 100 300 3000 50000

$ ls

…and examining the files produced.

Version: 2019-02-26 30

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 30

zombie.py can take a variable
numbers of parameters

$ rm -f running-zombie

$./zombie.py 0.005 0.0175 0.01 0.01 500
…

Model run time: 1.0e+01 days

…
Model took 7.457018e-02 seconds

$ rm running-zombie

$./zombie.py 0.005 0.0175 0.01 0.01 500 20.0
…

Model run time: 2.0e+01 days

…
$ rm running-zombie

$./zombie.py 0.005 0.0175 0.01 0.01 500 20.0 0.00001
…

Model took 1.331028e+01 seconds

Recall the zombie.py program is in your home directory that we have been
using for most of our scripts on the previous days of the course. Previously,
we’ve been giving the zombie.py program 5 numeric arguments on the
command line: 4 positive floating-point numbers and 1 positive integer.
However, the program can actually take up to 7 numeric arguments on the
command line. The last two arguments are optional (and, if specified, must be
positive floating-point numbers). (It would be nice if the zombie.py program
was well written enough to tell us it took optional arguments, but, alas, such poor
documentation is sadly typical of many programs you will find yourself using.)

zombie.py’s sixth command line argument (if specified) tells zombie.py the
number of days for which we want to model the zombie outbreak. If this
argument is not specified then it is assumed to be 10.0. If we specify this
argument we can tell it has been accepted by looking at the value printed on the
screen for the “Model run time”.

zombie.py’s seventh command line argument (if specified) tells zombie.py
the size of the time step to use in the model. If this argument is not specified
then it is set to the number of days divided by 10,000. Sadly, zombie.py does
not tell us the size of the time step it is using, but we can tell that changing the
size of the time step has had some effect by looking at how many points have
been generated in the zombie.dat output file or observing how long the model
takes to run – the smaller the time step, the more points will be generated and
so the longer the model takes to run.

Version: 2019-02-26 31

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 31

Where does the number of parameters
matter? (1)

#!/bin/bash
set -e

…
function run_program()
{

…
"${myPROG}" "${@}" > "stdout-${1}-${2}-${3}-${4}-${5}"

…
mv zombie.dat "zombie-${1}-${2}-${3}-${4}-${5}.dat"
mv zombie.png "zombie-${1}-${2}-${3}-${4}-${5}.png"

…
echo "Output file: zombie-${1}-${2}-${3}-${4}-${5}.dat" >> "${myLOGFILE}"

echo "Plot of output file: zombie-${1}-${2}-${3}-${4}-${5}.png" >> "${myLOGFILE}"

echo "Standard output: stdout-${1}-${2}-${3}-${4}-${5}" >> "${myLOGFILE}"

…

Obviously if we are going to handle variable numbers of parameters for
zombie.py, we will need to make some changes to the script running it.
If we were going to modify the multi-run-while.sh script (in the
scripts directory), what would we need to change?

The first thing we need to do is to identify those parts of the script where
the number of parameters being used by zombie.py matters to how the
script works. One of the most obvious places is in the run_program
function that actually runs zombie.py, since many of the files created or
renamed by that function use the individual parameters for zombie.py in
their names. If we inspect this function, we see that we use the string
“${1}-${2}-${3}-${4}-${5}” in the names of several files. If
zombie.py took six parameters, we would have to use
“${1}-${2}-${3}-${4}-${5}-${6}”, and if it took seven parameters,
we would have to use “${1}-${2}-${3}-${4}-${5}-${6}-${7}”.

Can we construct a generally useful function that can generate these sorts
of strings for us?

Version: 2019-02-26 32

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 32

Variable indirection: ${!VAR}

“Return the value of the variable or
parameter whose name is the value
contained in the variable VAR”

$ myFILENAME="infect.dat"
$ myVAR="myFILENAME"
$ echo "${!myVAR}"
infect.dat

Sometimes you might want to store the name of a
variable in another variable. If you need to do this,
you’ll need to use a special form of parameter
expansion to actually get the value of the variable
whose name you have stored: this is called variable
indirection. (We’ve already met the simplest form of
parameter expansion: ${VARIABLE}, which just gives
us the value of the environment variable, shell variable
or parameter VARIABLE. We’ll meet some other sorts
of parameter expansion later.)

As you can see from the example above, what
happens is that the shell takes the name contained in
the specified variable and treats it as the name of
another variable or parameter whose value it returns.

We’ll see an example of where this is useful in a
moment…

Version: 2019-02-26 33

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 33

Hyphenate those parameters
#!/bin/bash
set -e

function hyphenated_args()
{

myOUTPUT="${1}"
zzARG_NO="1"
while ["${zzARG_NO}" -lt "${#}"] ; do

zzARG_NO="$((zzARG_NO + 1))"
myOUTPUT="${myOUTPUT}-${!zzARG_NO}"

done
return 0

}

hyphenated_args "${@}"
echo "${myOUTPUT}"

$ cd
$ examples/hyphen-args1.sh red green 0.5 blue 600
red-green-0.5-blue-600

So here’s a function (in the hyphen-params1.sh script in
the examples directory) that, given any number of
arguments, will put hyphens between the arguments and
place the string thus constructed in a shell variable. (Recall
that the number of arguments for a shell script or a function is
contained in the special parameter #.)

Note the use of variable indirection to get, in turn, the
individual arguments passed to the function. (There’s
another, arguably better/simpler, way we can do this using the
shift shell builtin command that is briefly mentioned at the
very end of this course.)

We might want to use a function like this whenever we have a
program (like zombie.py) that takes a variable number of
arguments and we want to use those arguments in the name
of one or more files. This clearly is a function that might be
useful in many different scripts we might write, so how can we
easily make use of the same function in many different
scripts?

Well, first there’s a problem we need to address…

Version: 2019-02-26 34

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 34

Variables are global…
#!/bin/bash
set -e

function trash_vars()
{

myOUTPUT="rubbish"
zzCOUNT="6"
return 0

}

myOUTPUT="good"
zzCOUNT="1"

echo "Start counting..."
while ["${zzCOUNT}" -le "6"] ; do

echo "${zzCOUNT}"
trash_vars
zzCOUNT="$((zzCOUNT + 1))"

done

echo "myOUTPUT: ${myOUTPUT}"

$ cd
$ examples/overwrite-vars.sh

By default, shell variables are global, i.e. we can read
and modify there values both in our main script and in
any functions we create. Whilst sometimes this can be
useful, it can also cause problems if you forget this and
accidentally re-use a variable name in a function that
you are using elsewhere for something different. It is
particularly a problem with loop variables, as we see in
the example on the slide above.

So if we have a function that we want to use in lots of
different scripts, we either need to make sure we keep
careful track of what variables it uses and don’t use
them in any of our scripts, or we need to find a way to
make variables local (i.e. only exist within the function
and not affect the variables in the rest of the script, or in
other functions).

Version: 2019-02-26 35

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 35

local
To make a variable local:

local VARIABLE

…but this only works inside functions.

We can do this for multiple variables
using a single local command:

local VAR1 VAR2 VAR3

The local shell builtin command, when used within a
function, makes a variable local to that function. A local
variable doesn’t affect any other variable that has the
same name, and can only be read and modified in the
function in which it has been created. When the
function is finished any local variables it had are
destroyed.

You cannot use local outside of a function.

You can create a local variable and set its value all at
once if you want like this:

local VARIABLE=value

…where VARIABLE is the name of the variable and
value is its value.

Version: 2019-02-26 36

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 36

Using local variables
#!/bin/bash
set -e

function safe_vars()
{

local myOUTPUT
myOUTPUT="function data"
echo "In ${FUNCNAME}, myOUTPUT: ${myOUTPUT}"
return 0

}

myOUTPUT="main data"
echo "myOUTPUT: ${myOUTPUT}"

echo "Calling safe_vars..."
safe_vars

echo "myOUTPUT: ${myOUTPUT}"

$ cd
$ examples/local.sh

By default, shell variables are global, i.e. we can read
and modify there values both in our main script and in
any functions we create. Whilst sometimes this can be
useful, it can also cause problems if you forget this and
accidentally re-use a variable name in a function that
you are using elsewhere for something different. It is
particularly a problem with loop variables, as we see in
the example on the slide above.

So if we have a function that we want to use in lots of
different scripts, we either need to make sure we keep
careful track of what variables it uses and don’t use
them in any of our scripts, or we need to find a way to
make variables local (i.e. only exist within the function
and not affect the variables in the rest of the script, or in
other functions).

Version: 2019-02-26 37

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 37

Safer hyphenation function
#!/bin/bash
set -e

function hyphenated_args()
{

local myOUTPUT zzARG_NO
myOUTPUT="${1}"
zzARG_NO="1"
while ["${zzARG_NO}" -lt "${#}"] ; do

zzARG_NO="$((zzARG_NO + 1))"
myOUTPUT="${myOUTPUT}-${!zzARG_NO}"

done
echo "${myOUTPUT}"
return 0

}

myPARAMS="$(hyphenated_args ${@})"
echo "${myPARAMS}"

$ cd
$ examples/hyphen-args2.sh red green 0.5 blue 600
red-green-0.5-blue-600

So here’s a safer version of our hyphenation function (in the
hyphen-params2.sh script in the examples directory) that,
given any number of arguments, will put hyphens between the
arguments and write the string thus constructed to standard
output. (Note the use of the local shell builtin command.)

The most likely way that we would use this function is via
command substitution, as shown in the
hyphen-params2.sh script above. But regardless of
whether or not we use command substitution, we can safely
use this function in any script we like without worrying what
variables are used in the script: even if they have the same
names as the ones in this hyphenated_args function it
won’t matter.

So, how do we use a function in lots of different scripts?

Version: 2019-02-26 38

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 38

source
Read and execute commands from file in

the current shell environment

source file

Equivalently:

. file

source executes one shell script in the environment of the
current shell script (or shell) – it is as though you had copied the
shell script and pasted it into your current shell script. A
synonym for source is “.”, i.e.

source filename

. filename

do the same thing – they both execute the contents of the file
filename in the environment of the current shell script (or
shell).

If your shell script just defines some functions, then using
source on it will just define those functions for you in your
current shell script (or shell). When used this way, you can think
of the shell script containing the functions as a “library” of
functions, and the source command as “loading” that library
into the current script (or into the shell itself if you use it in an
instance of the shell).

Version: 2019-02-26 39

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 39

Hyphenation function in
another file

#!/bin/bash
set -e

source "${HOME}/examples/hyphenated-args-function.sh"

myPARAMS="$(hyphenated_args ${@})"
echo "${myPARAMS}"

$ cd
$ examples/hyphen-args3.sh red green 0.5 blue 600
red-green-0.5-blue-600

So here’s a script (hyphen-params3.sh in the
examples directory) that uses the same
hyphenation function as before, but the function is
defined in a separate script. (Note the use of the
source shell builtin command.)

A common practice is to put a lot of useful
functions in a shell script that only defines
functions and then use source to read that file in
to lots of different shell scripts that one writes.

Version: 2019-02-26 40

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 40

Where does the number of
parameters matter? (2)

…
Read in parameters from standard input
and then run program with them
and run it again and again until there are no more
while read myZD myI myR myD mySIZE myJUNK ; do

…

We’ve seen one function (the run_program function) that we would need
to modify if we are going to handle variable numbers of parameters for
zombie.py. (We looked at this function in the multi-run-while.sh
script (in the scripts directory), but we’d need to make the same sort of
modifications to any of the run_program functions in any of our scripts
that run zombie.py.)

But what else would we need to change?

If we look at the multi-sizes-errors.sh script (in the scripts
directory) we note that this script, like several of the others we’ve created
for running zombie.py, reads in the parameters for zombie.py from
standard input and expects to read in five parameters. So if zombie.py
could take up to seven parameters, then we need to modify this part of the
script to read in up to seven parameters, e.g. by changing the
while read line to:
while read myZD myI myR myD mySIZE myTIME myTSTEP myJUNK ; do

Version: 2019-02-26 41

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 41

Where does the number of
parameters matter? (3)

…
function multi_sizes()
{

…
Run program
run_program "${myZD}" "${myI}" "${myR}" "${myD}" "${zzSIZE}"

…
Report if there were problems

if ["${myBAD_PARAM}" -eq "0"] ; then
true

elif ["${myBAD_PARAM}" -eq "1"] ; then
echo "${myPROG} had a problem with parameter set: ${myZD} ${myI} ${myR} ${myD} ${zzSIZE}" >&2

elif ["${myBAD_PARAM}" -eq "2"] ; then

echo "gnuplot had a problem with parameter set: ${myZD} ${myI} ${myR} ${myD} ${zzSIZE}" >&2
else

echo "Problem with parameter set: ${myZD} ${myI} ${myR} ${myD} ${zzSIZE}" >&2
fi

…

We would also need to change the way we call
the run_program function, since it is when we
call this function that we give it the command line
arguments that zombie.py will actually use. In
the multi-sizes-errors.sh script (in the
scripts directory) this happens in the
multi_sizes function, so we’ll need to modify
this function as well.

Can you guess how we’ll have to change this
function?

Version: 2019-02-26 42

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 42

First exercise
Copy the multi-sizes-errors.sh script to

multi-variable-params.sh and modify that so that it
can handle variable numbers of parameters for zombie.py:

1) Modify the run_program function to use the
hyphenate_args function in the my-functions.sh file
in the scripts directory.

2) Modify the while read line in the main body of the script
so that it reads in seven parameters instead of five.

3) Modify the multi_sizes functions so that if the script has
read seven arguments for zombie.py, it calls
run_program with seven arguments; if it has read six
arguments, it calls run_program with six arguments, and if
it has read five arguments, it calls run_program with five
arguments. 15 minutes

The purpose of this exercise is to copy the multi-sizes-errors.sh script (in
the scripts subdirectory) to a script called multi-variable-params.sh and then
modify that script so that it can cope with parameter sets that have five, six or
seven parameters in them for zombie.py to take as its arguments. Everything
you need to do this exercise we’ve either just covered or was covered on
previous days of the course.

To read in the definition of the hyphenate_args function (which is in the my-
functions.sh script in the scripts directory) use the source shell builtin
command.

When modifying the multi_sizes function, one approach you might consider is
to do some sort of test on the seventh parameter read in by the script to see
whether or not it contains any value; if so, you would then call the run_program
function with seven parameters. You could then do something similar for the
sixth parameter, and then, if nothing was read in for either of those parameters,
you would call the run_program function with five parameters (as is currently
done in the multi-sizes-errors.sh script).

You can find a file with parameter sets with variable numbers of parameters in
them in the variable_params file in the scripts directory.

When you finish this exercise, take a short break and then we’ll start again with
the solution. (I really do mean take a break – sitting in front of computers for long
periods of time is very bad for you. Move around, go for a jog, do some aerobics,
whatever…)

Version: 2019-02-26 43

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 43

Manipulating filenames (1)
On the second day of this course we met

some scripts that, given a series of .dat
files produced by infect.py, would run
gnuplot on each of these files.

These scripts would take a file called
infect-50.dat and produce a file called
infect-50.dat.png. Can we make
these scripts use better names for the files
they create (e.g. infect-50.png)?

Version: 2019-02-26 44

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 44

${VARIABLE%word}

“Return the value of VARIABLE with word
removed from the end of it”

$ myFILENAME="infect-50.dat"
$ echo "${myFILENAME%.dat}"
infect-50

This strange looking operation is a form of what is known as
parameter expansion. We’ve already met the simplest form of
parameter expansion: ${VARIABLE}, which just gives us the
value of the environment variable, shell variable or parameter
VARIABLE. There are many minor variants like the one above,
but we’re not going to cover most of them in this course. See
the Parameter Expansion section of bash’s man page for further
details on the other forms.

As you can see from the example above, this form of parameter
expansion just removes the specified characters from the end of
the variable’s value and then returns that to us – it is important to
realise that it doesn’t directly modify the variable itself.

In the context we’ve just been looking at, we can make use of
this form of expansion to remove the common ending from our
filenames – we can then produce more sensibly named files.

Version: 2019-02-26 45

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 45

multi-gnuplot3.sh
#!/bin/bash

Run gnuplot program once for each output file
for zzFILES in infect-*.dat ; do

Create symbolic link called infect.dat to output file
ln -s -f "${zzFILES}" infect.dat

Run gnuplot
gnuplot infect.gplt

Delete infect.dat symbolic link
rm -f infect.dat

Rename infect.png
mv infect.png "${zzFILES}.png"

done

This file (multi-gnuplot3.sh) is in the gnuplot subdirectory of your
course home directory.

It takes each file whose name is of the form infect-<something>.dat
(where the <something> can be any set of characters that can appear in a
filename) in turn and creates a symbolic link to it called infect.dat, runs
gnuplot, then deletes the symbolic link (not the original file), and renames
the infect.png file to infect-<something>.dat.png.

To try out this script first create some files for it to process and then run it:
$ cd

$ rm –f *.dat *.png stdout-* logfile

$ scripts/multi-run.sh 50 100 500 1000 3000 5000 10000 50000

$ gnuplot/multi-gnuplot3.sh

Now do an ls to see what files have been created.

Version: 2019-02-26 46

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 46

multi-gnuplot4.sh
#!/bin/bash

Run gnuplot program once for each output file
for zzFILES in infect-*.dat ; do

Create symbolic link called infect.dat to output file
ln -s -f "${zzFILES}" infect.dat

Run gnuplot
gnuplot infect.gplt

Delete infect.dat symbolic link
rm -f infect.dat

Rename infect.png to name that doesn't have .dat in it
mv infect.png "${zzFILES%.dat}.png"

done

This file (multi-gnuplot4.sh) is a modified version of
multi-gnuplot3.sh, also in the gnuplot subdirectory of your course
home directory.

It takes each file whose name is of the form infect-<something>.dat
(where the <something> can be any set of characters that can appear in a
filename) in turn and creates a symbolic link to it called infect.dat, runs
gnuplot, then deletes the symbolic link (not the original file), and renames
the infect.png file to infect-<something>.png.

It uses the special form of parameter expansion we’ve just met to strip off the
“.dat” from infect-<something>.dat so that it can rename the file
produced by gnuplot to infect-<something>.png.

To try out this script first create some files for it to process and then run it:
$ cd

$ rm –f *.dat *.png stdout-* logfile

$ scripts/multi-run.sh 50 100 500 1000 3000 5000 10000 50000

$ gnuplot/multi-gnuplot4.sh

Now do an ls to see what files have been created.

Version: 2019-02-26 47

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 47

Manipulating filenames (2a)

$ rm -f *.dat
$ touch file1.dat file2.dat file3.dat

Suppose I want to rename a collection of files
all in one go, e.g. rename all my files
ending in .dat to files ending in .old. I
could try:

$ mv *.dat *.old
mv: target `*.old' is not a directory

Here’s another example where this form of parameter
expansion comes in handy.

A common issue you’ll probably run into on a Unix/Linux
platform is trying to rename groups of files whose names
all end in the same characters.

For example, let’s suppose that you have a collection of
data files all ending in .dat from the previous time you
ran your program. You want to run the program again,
but don’t want to overwrite the old files, so you want to
rename them so they all end in .old. Other than
manually renaming each file, how can we do this?

Version: 2019-02-26 48

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 48

Manipulating filenames (2b)
#!/bin/bash -e

function rename_files()
{

local zzFILE

if [-z "${1}"] ; then
return 1

fi

if [-z "${2}"] ; then
return 1

fi

for zzFILE in *"${1}" ; do
mv "${zzFILE}" "${zzFILE%${1}}${2}"

done

return 0
}

In the scripts subdirectory there is a file called my-functions.sh that contains the rename_files
function shown above. You can inspect it with your favourite editor or by just using the more command.

Note that because this function is designed to be used in an interactive shell only, i.e. not in a
shell script, we can reasonably safely use return with a non-zero return value (to indicate that
something has gone wrong).

The heart of this function is the highlighted portion above: for each file ending with the first
argument the function has been given, it renames the file to the same name with a different
ending. So if we called this function like this:

rename_files .dat .old

…then it would change the name of any files ending in .dat to end in .old.

We can try this function out like this (remembering that the source shell builtin command
“loads” the functions from my-function.sh into the running instance of the shell):

$ cd

$ source scripts/my-functions.sh

$ rm –f *.dat *.old

$ touch file1.dat file2.dat file3.dat

$ ls *.dat *.old

/bin/ls: *.old: No such file or directory

file1.dat file2.dat file3.dat

$ rename_files .dat .old

$ ls *.dat *.old

/bin/ls: *.dat: No such file or directory

file1.old file2.old file3.old

Version: 2019-02-26 49

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 49

Manipulating filenames (3)
dirname return the directory name

from a file path
$ dirname /usr/bin/python
/usr/bin

basename return the filename from a file
path, removing the given
ending (if specified)

$ basename /usr/bin/python
python
$ basename ~/hello.sh .sh
hello

Before we move on, just a quick note of a couple of Unix/Linux commands that can
help with manipulating files. If you have a path to a file, dirname will give you just the
directory, removing the actual filename whilst basename will give you the filename,
removing the directory path.

basename can also remove the endings of files, which means we could have used
command substitution and the basename command in the rename_files function
we just looked at as an alternative way of implementing it.

If you need to do more advanced filename (or file) manipulation, then you should look
at the find and xargs commands. The find command is covered in the “Unix
Systems: Further Commands” course, the notes for which are available here:

http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/earlier/commands

The find command searches for files in a directory tree, and having found the
specified files, can run a command on each file.

The xargs command builds a command line from a combination of values read from
standard input and arguments specified on the command line, and then executes that
command line a certain number of times. You can find out more about xargs from its
man page:

man xargs

Version: 2019-02-26 50

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 50

${VARIABLE/pattern/string}

“Return the value of VARIABLE with the
first instance of pattern substituted
with string”

$ myFILENAME="infect.dat.dat"
$ echo "${myFILENAME/.dat/.png}"
infect.png.dat
$ echo "${myFILENAME/.dat/}"
infect.dat

This is another form of parameter expansion. As you can see from
the example above, this form of parameter expansion just replaces
the first instance of the specified pattern with the specified string in
the variable’s value and then returns that to us. (Once again, note
that it doesn’t directly modify the variable itself.)

The specified string can be the empty string, (e.g.
${myFILENAME/.dat/}), in which case the specified pattern is
simply removed. (In this case you can omit the final /, so
${myFILENAME/.dat} is the same as ${myFILENAME/.dat/}.)

As you can probably imagine, this can be used for manipulating
filenames, but it can also be used for many other things, some of
which we will see shortly.

Version: 2019-02-26 51

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 51

${VARIABLE//pattern/string}

“Return the value of VARIABLE with all the
instances of pattern substituted with
string”

$ myFILENAME="infect.dat.dat"
$ echo "${myFILENAME//.dat/.png}"
infect.png.png
$ echo "${myFILENAME//.dat/}"
infect

If, instead of
${VARIABLE/pattern/string/}, we use
${VARIABLE//pattern/string/} then
all instances of the specified pattern are
replaced with the specified string in the
variable’s value and then returned to us.

Version: 2019-02-26 52

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 52

Patterns (1)
Patterns are a subset of what are called regular

expressions, which you may have already used
with the grep command.

* matches any sequence of characters:
$ myFILENAME="infect.dat.png"

$ echo "${myFILENAME/*.dat/data}"

data.png

? matches any single character:
$ myFILENAME="infect1.dat"
$ echo "${myFILENAME/infect?/output}"
output.dat

The permissible patterns are the same as the ones that are
used in “file name globbing” as covered in the CS “Unix:
Introduction to the Command Line Interface” course. For details
of this course, see:

http://www.training.cam.ac.uk/ucs/course/ucs-unixintro1

The notes from this course are available on-line at:
http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/UnixCLI

Note that * matches any sequence of characters, including a
sequence that consists of no characters, i.e. the empty string.

We won’t be covering regular expressions in their full complexity
in this course, but if you are interested, or if you need to find
particular pieces of text amongst a collection of text, then you
may wish to attend the CS “Programming Concepts: Pattern
Matching Using Regular Expressions” course, details of which
are given here:

https://www.training.cam.ac.uk/ucs/course/ucs-regex

Version: 2019-02-26 53

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 53

Patterns (2a)
[…] matches any one of the specified characters in the brackets:
$ myFILENAME="infect5.dat"

$ echo "${myFILENAME/[45].dat/.png}"

infect.png

Can specify ranges of characters using a hyphen (-):
$ myFILENAME="infect5.dat"

$ echo "${myFILENAME/[0-6].dat/.png}"

infect.png

$ myFILENAME="infect7.dat"

$ echo "${myFILENAME/[0-6].dat/.png}"

infect7.dat

To match a hyphen (-) make it the first character:
$ myFILENAME="infect-5.dat"

$ echo "${myFILENAME/[-_+]/ }"

infect 5.dat

Note that at most only one of the specified characters in the brackets will match, so:
$ myFILENAME="infect45.dat"

$ echo "${myFILENAME/[45].dat/.png}"

infect4.png

Ranges of characters, such as [c
1
-c

2
], mean match any single character in the

range c
1
 to c

2
. Thus [0-100] means “match any character in the range 0-1, or

match 0, or match 0”. So it only matches the characters “0” or “1”. It does not
match the integers 0 to 100. The range of characters is determined by the current
sort order, which is language dependent. Thus the range [a-z] may give different
things depending on the sort order in use – for this reason we often use character
classes (see next slide) so we can be sure what characters we are matching
against.

If you want to match a hyphen (-), it must be the first character that appears in the
brackets, so [-_+] means match any one of the following characters: -, _ or +.
$ myFILENAME="infect-5.dat"

$ echo "${myFILENAME/[-_+]/ }"

infect 5.dat

$ myFILENAME="infect+5.dat"

$ echo "${myFILENAME/[-_+]/ }"

infect 5.dat

$ myFILENAME="infect_5.dat"

$ echo "${myFILENAME/[-_+]/ }"

infect 5.dat

Version: 2019-02-26 54

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 54

Patterns (2b)
Within the brackets ([]) can use various character

classes:

[:digit:] is equivalent to 0-9, i.e. it matches any digit,
e.g.

$ myFILENAME="infect5.dat"

$ echo "${myFILENAME/[[:digit:]].dat/.png}"

infect.png

There are various other character classes that you can
use, but we won’t use them in this course.

As mentioned on the previous slide, the range of characters is determined by
the current sort order, which is language dependent. Thus the range [a-z]
may give different things depending on the sort order in use, for instance it
might mean [abcdefghijklmnopqrstuvwxyz] or it might mean
[aBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz]. For
this reason we often use character classes, e.g. [[:lower:]] matches any
on of the lower case alphabetic characters ‘a’, ‘b’, ‘c’, … ‘z’. so we can be sure
what characters we are matching against. You can find a list of the allowed
character classes in the the Pattern Matching subsection (in the Pathname
Expansion section) of bash’s man page, but here are some of the most useful
ones:

[:alnum:] Any alphabetic character (upper or lower case) or any
digit.

[:alpha:] Any alphabetic character (upper or lower case).

[:blank:] Any horizontal white space (space or tab, essentially).

[:digit:] Any of the ten digits (0-9).

[:lower:] Any lower case alphabetic character.

[:space:] Any white space (space, tab, newline, etc).

[:upper:] Any upper case alphabetic character.

[:xdigit:] Any hexadecimal digit (i.e. 0-9 and A-F (upper or
lower case)).

Version: 2019-02-26 55

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 55

Make integers disappear!
[-[:digit:]] is equivalent to [-0-9], i.e. it matches

any digit or the minus sign, so…
$ myNUMBER="123456"

$ echo "${myNUMBER//[-[:digit:]]/}"

$

${VARIABLE//[-[:digit:]]/} will return an empty string
if VARIABLE is an integer, since all the digits (and the minus
sign if there is one) will be replaced.

You may be wondering why we would do
this: in a few minutes we’ll see how we can
use this to test for integers.

Note that we need to use the
${VARIABLE//pattern/} form to make
sure we replace all instances of the pattern
(digits or a minus sign).

Also, note that this gives false positives
since it will return the empty string for things
like “12---35” as well as “-1235”.

Version: 2019-02-26 56

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 56

And now all numbers vanish!
[-.[:digit:]] is equivalent to [-.0-9], i.e. it matches

any digit or the minus sign or the decimal point, so…
$ myNUMBER="-34.56"

$ echo "${myNUMBER//[-.[:digit:]]/}"

$

${VARIABLE//[-.[:digit:]]/} will return an empty string
if VARIABLE is a number, since all the digits (and the minus
sign, if there is one, and the decimal point if there is one) will
be replaced.

Again, you may be wondering what use this
is: in a few minutes we’ll see how we can
use this to test for numbers.

Note that we need to use the
${VARIABLE//pattern/} form to make
sure we replace all instances of the pattern
(digits or a minus sign or a decimal point).

Also, note that this gives false positives
since it will return the empty string for things
like “12.-.35” as well as “-12.35”.

Version: 2019-02-26 57

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 57

Is it an integer…? (almost)

if [-z "${VARIABLE//[-[:digit:]]/}" ; then
echo "It's an integer."

else
echo "Not an integer"

fi

So now we can test and see whether an
environment variable, shell variable or
parameter is an integer or not (well, almost).

Note that this test does give false positives
since it gives true for things like “12---35”
(which is not an integer) as well as “-1235”
(which is an integer).

Version: 2019-02-26 58

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 58

Is it a number…? (almost)

if [-z "${VARIABLE//[-.[:digit:]]/}" ; then
echo "It's a number."

else
echo "Not a number"

fi

So now we can test and see whether an
environment variable, shell variable or
parameter is a (decimal) number or not
(again, almost).

Note that this test does give false positives
since it gives true for things like “12-.-35”
(which is not a number) as well as “-12.35”
(which is a number).

Version: 2019-02-26 59

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 59

${VARIABLE#word}

“Return the value of VARIABLE with word
removed from the beginning of it”

$ myFILENAME="infect-50.dat"
$ echo "${myFILENAME#infect}"
-50.dat

This is another form of parameter expansion. As
you can see from the example above, this form of
parameter expansion just removes the specified
characters from the beginning of the variable’s
value and then returns that to us.

In the context we’ve just been looking at, we can
make use of this form of expansion to remove any
leading minus sign from our value, which will make
it easier to test whether or not it is a number.

Version: 2019-02-26 60

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 60

Is it an integer…? (finally!)

 zzTEST="${VARIABLE#-}"
if [-z "${zzTEST//[[:digit:]]/}" ; then

echo "It's an integer."
else

echo "Not an integer"
fi

So now we can test and see whether an
environment variable, shell variable or
parameter is an integer or not (with no false
positives).

First we strip off any leading minus sign, and
then we make sure that all that is left are
digits (0-9).

Version: 2019-02-26 61

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 61

Is it a number…? (at last!)

zzTEST="${VARIABLE#-}"
zzTEST="${zzTEST/./}"
if [-z "${zzTEST//[[:digit:]]/}" ; then

echo "It's a number."
else

echo "Not a number"
fi

So now we can test and see whether an
environment variable, shell variable or
parameter is a (decimal) number or not
(again, without any false positives).

First we remove any leading minus sign.
Then we remove at most one decimal point.
Finally we make sure that all that is left are
the digits (0-9).

Version: 2019-02-26 62

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 62

Second exercise
The problem with the input checking we do in the
multi-variable-params.sh script is that it
won’t work as well as we might hope if we give that script a
command line argument that isn’t an integer: if this happens
we’ll get a syntax error. How can we make this script better?

Write a function that checks whether its first argument is an
integer, and another that checks whether its first argument is a
number. Store these functions in the file my-functions.sh
in the scripts directory.

Now modify the check_args function in the
multi-variable-params.sh script to use one or more of
these functions to check that each of its arguments is an
integer before it checks whether they are too small or too big.

10 minutes

You should have created the
multi-variable-params.sh shell script in the
previous exercise. If you didn’t, use the
multi-sizes-errors.sh script in the
scripts directory of your home directory instead.

When you finish this exercise, take a short break
and then we’ll start again with the solution. (I
really do mean take a break – sitting in front of
computers for long periods of time is very bad for
you. Move around, go for a jog, do some
aerobics, whatever…)

Version: 2019-02-26 63

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 63

Nested ifs
#!/bin/bash

…
if ["${1}" = "one"] ; then

first_function
elif ["${1}" = "two"] ; then

second_function
elif ["${1}" = "three"] ; then

third_function
elif ["${1}" = "four"] ; then

fourth_function
else

echo "Huh?" >&2
exit 1

fi

$ cd
$ examples/nested-if.sh one

On the previous day of the course we saw that we could
use “nest” if statements. In the examples subdirectory
there is a silly shell script called nested-if.sh that
illustrates the nested if construct. The heart of the script
is shown above – first_function, second_function,
third_function and fourth_function are all shell
functions defined in the script.

Try the script out and remind yourself what it does.
Although it’s a silly example, it should give you an idea of
the sort of useful things for which you can use such scripts.

Version: 2019-02-26 64

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 64

A better nested if: case
• Do different things depending on the value of

a variable
• Equivalent to using lots of if and else

constructs

case "${VARIABLE}" in
value1|value2|value3)

<commands>
;;

value4|value5)
<other commands>
;;

*)
<more commands>
;;

esac

Some programming languages have a construct which
does the same sort of thing as the shell’s case construct.
 In many of these languages it is known as the switch
statement.

There are some examples of how to use it in the following
files in the examples directory:

case1.sh

case2.sh

…and we shall now look at how to use the case
construct in more detail.

Version: 2019-02-26 65

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 65

Simple case
#!/bin/bash

…
case "${1}" in

"one")
first_function
;;

"two")
second_function
;;

"three")
third_function
;;

"four")
fourth_function
;;

*)
echo "Huh?" >&2
exit 1
;;

esac

In the examples subdirectory there is a shell script called
case-equivalent.sh that implements the logic of the
nested-if.sh shell script (also in the examples
subdirectory) using case. The heart of the script is shown
above – first_function, second_function,
third_function and fourth_function are all shell
functions defined in the script.

If you want you can try the script out and see for yourself
that it does the same thing as nested-if.sh.

Version: 2019-02-26 66

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 66

More use of case
#!/bin/bash

…
case "${1}" in

"1"|"one"|"ONE")
first_function
;;

"2"|"two"|"TWO")
second_function
;;

"3"|"three"|"THREE")
third_function
;;

"4"|"four"|"FOUR"|"5"|"five"|"FIVE")
fourth_function
;;

*)
echo "Huh?" >&2
exit 1
;;

esac

In the examples subdirectory there is a shell script called
case-is-better.sh that implements an expanded
version of the nested-if.sh shell script (also in the
examples subdirectory) using case. The heart of the
script is shown above – first_function,
second_function, third_function and
fourth_function are all shell functions defined in the
script.

Try the script out, giving it the uppercase words “ONE”,
“TWO”, and the integers, 1, 2, etc as arguments. Then
consider how many extra lines you would have to add to
the original nested-if.sh script to get the same
functionality if you used if instead.

Version: 2019-02-26 67

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 67

case uses patterns
#!/bin/bash

…
case "${1}" in

"1"|[Oo][Nn][Ee])
first_function
;;

"2"|[Tt][Ww][Oo])
second_function
;;

"3"|[Tt][Hh][Rr][Ee][Ee])
third_function
;;

"4"|[Ff][Oo][Uu][Rr]|"5"|[Ff][Ii][Vv][Ee])
fourth_function
;;

*)
echo "Huh?" >&2
exit 1
;;

esac

You may have noticed that case uses * to mean “match
anything”. We already met * when we looked at patterns
earlier. case can use any of the patterns that are used in
parameter expansion, so we can use […] to mean match
one of a range of the specified characters as above.

However, when using patterns like this for case, the pattern
must not be enclosed in quotes or it won’t be treated as a
pattern.

In the examples subdirectory there is a shell script called
case-is-great.sh that demonstrates the use of
patterns with case. Try the script out, giving it the mixed
case words “OnE”, “tWO”, etc as arguments. Now consider
how many extra lines you would have to add to get the
same functionality in the original nested-if.sh script if
you used if instead.

Version: 2019-02-26 68

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 68

Third exercise
Convert the nested if statements in this script

to case constructs.
…

Report if there were problems
if ["${myBAD_PARAM}" -eq "0"] ; then

true
elif ["${myBAD_PARAM}" -eq "1"] ; then

echo "${myPROG} had a problem with parameter set: ${myPARAMS}" >&2
elif ["${myBAD_PARAM}" -eq "2"] ; then

echo "gnuplot had a problem with parameter set: ${myPARAMS}" >&2
else

echo "Problem with parameter set: ${myPARAMS}" >&2
fi

…

7 minutes

You should have created the multi-variable-params.sh script as a
solution to the first exercise. (If you didn’t, use the
multi-sizes-error.sh script in the scripts subdirectory of your
home directory instead, although note that that only has one nested if
statement and the echo shell builtin commands in it will be slightly
different.) This script will have at least one nested if statement (which will
look something like the one shown on the slide above) – it may have more
than one. Convert all its nested if statements into case statements.

If you have any questions, or there’s anything you don’t understand, please
ask the course giver or a demonstrator.

Check that the script still works by doing the following:
$ cd

$ rm –f stdout-* *.dat *.png logfile

$ cat scripts/variable_params | scripts/multi-variable-params.sh

$ ls

…and examining the files produced.

When you finish this exercise, take a short break and then we’ll start again
with the solution. (I really do mean take a break – sitting in front of
computers for long periods of time is very bad for you. Move around, go for
a jog, do some aerobics, whatever…)

Version: 2019-02-26 69

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 69

Lists of commands
To execute a series of commands one

after the other separate each command
with the semi-colon (;):

$ cd ; ls ; echo "Hi."

The shell waits for each command in the
list to finish before executing the next
one. The exit status of the list is the exit
status of the last command executed.

A list of commands is an ordered sequence of commands. There are
different types of lists. The simplest type of list uses the semi-colon
(;) to separate commands: each command is executed in turn, and
the shell waits for the each command to finish before executing the
next one. The exit status of a list of commands is the exit status of the
last command executed.

This type of list is most frequently used when you want to give a
sequence of commands to the interactive shell to execute all at once
rather than typing each command, waiting for the shell prompt, typing
the next command, etc. This type of list is not used that often in shell
scripts, although you may occasionally come across it.

Version: 2019-02-26 70

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 70

AND lists (&&)
Execute the next command only if the

previous one succeeded (returned an
exit status of 0):

$ cd && ls
$ false && echo "Hi."

The exit status of an AND list is the exit
status of the last command executed.

Note that an AND list uses two ampersands with no spaces between
them (&&). A single ampersand (&) is used to run the command
preceding it in the background.

In an AND list, the next command is only executed if the previous
command succeeded (i.e. it returned an exit status of 0). This type of
list can be extremely useful for ensuring that one command is only
executed if another one has succeeded regardless of whether or not
set -e is in effect.

A common use of AND lists is to change directory to somewhere and,
if and only if, the change directory succeeded then do something, e.g.

cd /tmp && rm -Rf *

An AND list can have many commands in it, e.g.

cd && ls && echo "It worked."

Version: 2019-02-26 71

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 71

OR lists (||)
Execute the next command only if the

previous one failed (returned a non-zero
exit status):

$ false || echo "Bad bad"
$ true || echo "Hi."

The exit status of an OR list is the exit
status of the last command executed.

Note that an OR list uses two vertical bars with no spaces between them
(||). A single vertical bar (|) is used to create a pipe (the standard
output of the command before the vertical bar is sent to the standard
input of the command after the vertical bar).

In an OR list, the next command is only executed if the previous
command failed (i.e. it returned with a non-zero exit status). This type of
list can be extremely useful when set -e is in effect to ensure that the
shell does not quit even if a given command fails. Thus, a common use
of an OR list is to try and run a command and, if the command fails, to
then run true so that the exit status of the OR list is 0, thus ensuring
that the shell does not quit even if set -e is in effect, e.g.

program-that-often-crashes || true

An OR list can have many commands in it, e.g.

false || cd /NOWHERE || echo "Nothing worked."

Version: 2019-02-26 72

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 72

Combining tests (1)
Tests can be combined with && (AND) or || (OR)

True if and only if both <expression1> and
<expression2> are true:

[<expression1>] && [<expression2>]

or: test <expression1> && <expression2>

True if either <expression1> or
<expression2> (or both) are true:

[<expression1>] || [<expression2>]

or: test <expression1> || <expression2>

All the tests we have already met
can be combined with && (AND)
and || (OR). We can then use
such combined tests in if
statements.
See the next slide for an example.

Version: 2019-02-26 73

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 73

Combining tests (2)
…

Say whether 0 < myNUMBER < 10000 using && (AND)
if ["${myNUMBER}" -gt "0"] &&
 ["${myNUMBER}" -lt "10000"] ; then

echo "Number (${myNUMBER}) is in range."
else

echo "Number (${myNUMBER}) is out of range." >&2
fi

Say whether 0 < myNUMBER < 10000 using || (OR)
if ["${myNUMBER}" -le "0"] ||
 ["${myNUMBER}" -ge "10000"] ; then

echo "Number (${myNUMBER}) is out of range." >&2
else

echo "Number (${myNUMBER}) is in range."
fi

$ cd
$ examples/combine-test.sh 5600

The combine-tests.sh script in the examples
subdirectory of your home directory (partially shown on the
slide above) demonstrates combining tests with && (AND)
and || (OR) in if statements.
Note that the tests in the if statement have been split
across several lines. This is not compulsory – you can put
them all on the same line if you wish – but putting them on
separate lines often improves readability.

Try the script by doing the following:
$ cd
$ examples/combine-test.sh 5600

…and then try giving the script some other integers as its
first argument until you are sure that it works the way you
expect.

Please ask the course giver or a demonstrator if you have
any questions or there’s anything you don’t understand.

Version: 2019-02-26 74

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 74

Advanced Techniques

The following slide(s) outline some more
advanced shell scripting techniques that
we don’t have time to explore in detail in
this course, but which may nevertheless
be of some interest.

Version: 2019-02-26 75

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 75

Advanced techniques:
Command-line handling

${1}="red" ${2}="blue" ${3}="green"

shift

${1}="blue" ${2}="green" no ${3}

shift

${1}="green" no ${2} no ${3}

The shift shell builtin command moves command-line
parameters “along one to the left”.

Examples of its use are given in the files shift1.sh and
shift2.sh in the examples directory.

In conjunction with the case construct we can use it to do
some reasonably sophisticated command-line handling.
The following files in the examples directory give some
examples of how to do this:

params1.sh

params2.sh

Version: 2019-02-26 76

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Four 76

Give us Feedback!

Please make sure that you fill in the
Course Review form online, accessible
under “feedback” on the main MCS Linux
menu, or via:

http://feedback.training.cam.ac.uk/uis/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Outline of Course
	Slide 7
	Recap: Days One & Two
	Slide 9
	Nested ifs (1)
	More tests (1)
	More tests (2)
	Standard Error (2)
	set –e, set +e
	exit
	return
	Slide 17
	Recap: What are we trying to do?
	Slide 19
	Slide 21
	Know Your Enemy (1)
	Know Your Enemy (2)
	Final exercise – Plan of action
	Solution to Part One
	Solution to Part Two (1)
	Solution to Part Two (2)
	Better error handling (3)
	Better error handling (2)
	Slide 30
	Generalising multi-run-while.sh
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	source
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	What else are tests good for?
	${VARIABLE%word}
	multi-gnuplot3.sh
	Slide 46
	Manipulating filenames (1)
	Manipulating filenames (2)
	Manipulating filenames (3)
	Slide 50
	Slide 51
	Using tests (1)
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	First exercise
	Nested ifs (2)
	Advanced techniques: case
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Advanced Techniques
	Advanced techniques: Command-line handling
	Slide 76

