

Version: Lent 2020 1

Simple Shell Scripting for
Scientists

Anna Langley
Ben Harris

University of Cambridge Information Services

Day Three

Version: Lent 2020 2

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 2

Introduction• Who:
§ Anna Langley, Infrastructure Division, UIS
§ Ben Harris, Infrastructure Division, UIS

• What:
§ Simple Shell Scripting for Scientists course, Day One
§ Part of the Scientific Computing series of courses

• Contact (questions, etc):
§ scientific-computing@uis.cam.ac.uk

• Health & Safety, etc:
§ Fire exits

• Please use mobiles considerately

As this course is part of the Scientific Computing
series of courses run by the University Information
Services, all the examples that we use will be more
relevant to scientific computing than to system
administration, etc.
This does not mean that people who wish to learn
shell scripting for system administration and other
such tasks will get nothing from this course, as the
techniques and underlying knowledge taught are
applicable to shell scripts written for almost any
purpose. However, such individuals should be
aware that this course was not designed with them
in mind.

Version: Lent 2020 3

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 3

We finish at:

17:00
The course officially finishes at 17.00, so don't expect to
finish before then. If you need to leave before 17.00 you are
free to do so, but don’t expect us to have covered all today's
material by then. How quickly we get through the material
varies depending on the composition of the class, so whilst
we may finish early you should not assume that we will. If
you do have to leave early, please leave quietly.

Before the end of today's session, please make sure
that you fill in the Course Review form online, accessible
under “feedback” on the main MCS Linux menu, or via:
 http://feedback.training.cam.ac.uk/uis/

Version: Lent 2020 4

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 4

What we don’t cover
• Different types of shell:

§ We are using the Bourne-Again SHell
(bash).

• Differences between versions of bash
• Very advanced shell scripting – try

one of these courses instead:
§ “Python 3: Introduction for Absolute Beginners”
§ “Python 3: Introduction for Those with

Programming Experience”

bash is probably the most common shell on modern Unix/Linux systems –
in fact, on most modern Linux distributions it will be the default shell (the
shell users get if they don’t specify a different one). Its home page on the
WWW is at:

https://www.gnu.org/software/bash/

We will be using bash 4.4 in this course, but everything we do should work
in bash 2.05 and later. Version 4, version 3 and version 2.05 (or 2.05a or
2.05b) are the versions of bash in most widespread use at present. Most
recent Linux distributions will have one of these versions of bash as one of
their standard packages. The latest version of bash (at the time of writing) is
bash 5.0, which was released in January 2019.

For details of the “Python 3: Introduction for Absolute Beginners” course,
see:

https://www.training.cam.ac.uk/ucs/course/ucs-python
For details of the “Python 3: Introduction for Those with Programming
Experience” course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-python4progs

Version: Lent 2020 5

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 5

Related course

Unix Systems: Further Commands:
§More advanced Unix/Linux

commands you can use in your
shell scripts

§Course discontinued (due to lack of
demand) but course notes still
available on-line

For the course notes from the “Unix Systems: Further
Commands” course, see:

https://help.uis.cam.ac.uk/help-support/training/downloads/
course-files/programming-student-files/commands

Version: Lent 2020 6

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 6

Outline of Course
1. Recap of days one & two
2. The if statement
3. exit, standard error

SHORT BREAK
4. More tests
5. if…then…else

6. Better error handling, return
7. if…elif…elif…elif…else

SHORT BREAK
8. Problems with set -e

Exercise

The course officially finishes at 17.00, but the intention
is that the lectured part of the course will be finished by
about 16.30 or soon after, and the remaining time is for
you to attempt an exercise that will be provided. If you
need to leave before 17.00 (or even before 16.30), please
do so, but don’t expect the course to have finished
before then. If you do have to leave early, please leave
quietly.

Before the end of today's session, please make
sure that you fill in the Course Review form online,
accessible under “feedback” on the main MCS Linux
menu, or via:
 https://feedback.training.cam.ac.uk/uis/

Version: Lent 2020 7

As this is a shell scripting course, we are going to need to
interact with the Unix shell.
To start a shell, click on “Activities” in the top-left corner of
the screen, then click on the “Terminal” icon in the desktop
application bar.
A Terminal window will then appear.

Version: Lent 2020 8

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 8

Recap: Days One & Two
• Shell scripts as linear lists of commands
• Simple use of shell variables and parameters
• Simple command line processing
• Shell functions
• Pipes and output redirection
• Accessing standard input using read
• for and while loops
• (Integer) arithmetic tests
• Command substitution and (integer) arithmetic

expansion
• The mktemp command

Version: Lent 2020 9

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 9

Recap: Shell functions (1)
$ cd
$ cat hello-function
#!/bin/bash
function hello()
{
 # This is a shell function.
 echo "Hello."
 echo "I am function $FUNCNAME."
}

$./hello-function
$

Shell functions are similar to functions in most high-level programming languages. Essentially
they are “mini-shell scripts” (or bits of shell scripts) that are invoked (called) by the main shell
script to perform one or more tasks. When called they can be passed arguments (parameters), as
we will see later, and when they are finished they return control to the statement in the shell
script immediately after they were called.

To define a function, you just write the following at the start of the function:
function function_name()
{

where function_name is the name of the function. Then, after the last line of the function
you put a line with just a closing curly brace (}) on it:
}

Note that unlike function definitions in most high level languages you don’t list what parameters
(arguments) the function takes. This is not so surprising when you remember that shell
functions are like “mini-shell scripts” – you don’t explicitly define what arguments a shell script
takes either.

Like functions in a high-level programming language, defining a shell function doesn’t actually
make the shell script do anything – the function has to be called by another part of the shell
script before it will actually do anything.

FUNCNAME is a special shell variable (introduced in version 2.04 of bash) that the shell sets
within a function to the name of that function. When not within a function, the variable is unset.

Version: Lent 2020 10

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 10

Recap: Shell functions (2)
• “mini-shell scripts”

• Usually used for well-defined tasks (often
called repeatedly)

• Specify arguments by listing them after
function name when calling function
hello Dave

• Positional parameters (and related special
shell parameters) set to function’s arguments
within function
In function hello, positional parameter 1 = Dave

If you’ve implemented your shell script entirely as shell functions, there is a really nice trick
you can use when something goes wrong and you need to debug your script, or if you want to
re-use some of those functions in another script. As you’ve implemented the script entirely as a
series of functions, you have to call one of those functions to start the script actually doing
anything. For the purposes of this discussion, let’s call that function main. So your script
looks something like:

function start()

{

…
}

function do_something()

{

…
}

function end()

{

…
}

function main()

{

…
}

main

By commenting out the call to the main function, you now have a shell script that does nothing
except define some functions. You can now easily call the function(s) you want to debug/use
from another shell script using the source shell builtin command (as we’ll see on the optional
final day of the course). This makes debugging much easier than it otherwise might be, even of
really long and complex scripts.

Version: Lent 2020 11

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 11

Recap: Output redirection and
pipes

• Commands normally send their output to
standard output (which is usually the screen)

• Standard output can be redirected to a file

• A pipe takes the output of one command and
supplies it to another command as input.

Version: Lent 2020 12

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 12

Recap: More input and output, and
while loops

• Command substitution $(command) can be used to get
the output of a command into a shell variable

• Use mktemp (see Appendix for details) to make temporary
files and directories

• read gets values from standard input

• while loops repeat some commands while something is
true – can be used to read in multiple lines of input with
read

• A command is considered to be true if its exit status is 0.

• The command true does nothing but is considered to be
true (its exit status is 0); the command false does nothing
but is not considered to be true (non-zero exit status).

Note that even if we are using:
set -e
or the first line of our shell script is
#!/bin/bash -e
the shell script will not exit if the “something” the
while loop depends on gives a non-zero exit status (i.e.
is false), since if it did, this would make while loops
unusable(!).

Version: Lent 2020 13

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 13

Recap: Exit Status
• Every program (or shell builtin command)

returns an exit status when it completes
• Number between 0 and 255
• Not the same as the program’s (or shell builtin

command’s) output
• By convention:

§ 0 means the command succeeded
§ Non-zero value means the command failed

• Exit status of the last command run stored in
special shell parameter named ?

The exit status of a program is also called its exit code,
return code, return status, error code, error status,
errorlevel or error level.

You get the value of the special parameter ? by using the
construct ${?}.

Version: Lent 2020 14

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 14

Recap: Tests
Test to see if something is true:

[[<expression>]]

 [[$a –eq $b]]
 [[$a –le 42]]
 [[$a -gt 0]]
 [[$str = "aardvark"]]

A test is basically the way in which the shell evaluates an expression to see if it is true. There are
many different tests that you can do, and we only list a few here:
[[$a –lt $b]] true if and only if the integer a is less than the integer b

[[$a –le $b]] true if and only if the integer a is less than or equal to the integer b

[[$a –eq $b]] true if and only if the integer a is equal to the integer b

[[$a –ne $b]] true if and only if the integer a is not equal to the integer b

[[$a –ge $b]] true if and only if the integer a is greater than or equal to the integer b

[[$a –gt $b]] true if and only if the integer a is greater than the integer b

In the above tests, a and b can be any integers. Recall that shell variables can hold pretty much
any value we like – they can certainly hold integer values, so a and/or b in the above expressions
could come from shell variables, e.g.

[[$VAR –eq 5]]

Or, equivalently:
test "${VAR}" –eq "5"

is true if and only if the shell variable VAR contains the value “5”.

Note that you must have a space between the square brackets [[]]

N.B.: Use -eq for testing integers, and use == or = for testing the equality of strings.
N.B. Use help test | less to list the available tests and what they do.

Version: Lent 2020 15

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 15

Recap: Shell arithmetic

• The shell can do integer arithmetic –
this is known as arithmetic expansion

• The shell can also perform arithmetic
tests on integers (>, ≥, =, ≤, <)

Version: Lent 2020 16

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 16

Recap: Arithmetic Expansion
$(())

• Returns the value of an integer
arithmetic operation

• Operands must be integers (so no
decimals, e.g. 2.5, etc)

• Use bare variable names within the
arithmetic expression

$((<arithmetic-expression>))

Example:
$((VAR + 56))

The shell can also do (primitive) integer arithmetic, which can be
very useful.

The construct $((<arithmetic-expression>)) means
replace $((<arithmetic-expression>)) with the result of
the integer arithmetic expression <arithmetic-
expression>. This is known as arithmetic expansion. (The
arithmetic expression is evaluated as integer arithmetic.)

Note that C syntax is used within the brackets, therefore you
should use the bare variable name (This is, alas, inconsistent
with the shell’s behaviour elsewhere) We can put quotes
around the entire arithmetic expansion construct, though,
although this should not be necessary because the output
should be numeric.

Version: Lent 2020 17

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 17

Recap: What are we trying to do?

Scientific computing

i.e. shell scripts that do
some useful scientific
work, e.g. repeatedly
running a simulation
or analysis with different data

Recall the name of this course (“Simple Shell Scripting for Scientists”) and its
purpose: to teach you, the scientist, how to write shell scripts that will be useful
for your scientific work.

As mentioned on the first day of the course, one of the most common (and best)
uses of shell scripts is for automating repetitive tasks. Apart from the sheer
tediousness of typing the same commands over and over again, this is exactly
the sort of thing that human beings aren’t very good at: the very fact that the task
is repetitive increases the likelihood we’ll make a mistake (and not even notice
at the time). So it’s much better to write (once) – and test – a shell script to do it
for us. Doing it via a shell script also makes it easy to reproduce and record
what we’ve done, two very important aspects of any scientific endeavour.

So, the aim of this course is to equip you with the knowledge and skill you need
to write shell scripts that will let you run some program (e.g. a simulation or data
analysis program) over and over again with different input data and organise the
output sensibly.

Version: Lent 2020 18

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 18

Sample program: zombie (1)
$./zombie 0.005 0.0175 0.01 0.01 500
When Zombies Attack!: Basic Model of outbreak of zombie infection

Population size: 5.0000e+05
Model run time: 1.0e+01 days

Zombie destruction rate (alpha): 5.000000e-03
Zombie infection rate (beta): 1.750000e-02
Zombie resurrection rate (zeta): 1.000000e-02
Natural death [and birth] rate (delta): 1.000000e-02

Output file: zombie.dat

Model took 7.457018e-02 seconds

The zombie program is in your home directory. It is a program written specially
for this course, but we’ll be using it as an example program for pretty general
tasks you might want to do with many different programs. Think of zombie as
just some program that takes some input on the command line and then produces
some output (on the screen, or in one or more files, or both), e.g. a scientific
simulation or data analysis program.

The zombie program takes 5 numeric arguments on the command line: 4
positive floating-point numbers and 1 positive integer. It always writes its output
to a file called zombie.dat in the current working directory, and also writes
some informational messages to the screen.

The zombie program is not as well behaved as we might like (which, sadly, is
also typical of many programs you will run). The particular way that zombie is
not well behaved is this: every time it runs it creates a file called running-
zombie in the current directory, and it will not run if this file is already there
(because it thinks that means it is already running). Unfortunately, it doesn’t
remove this file when it has finished running, so we have to do it manually if we
want to run it multiple times in the same directory.

Version: Lent 2020 19

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 19

Sample program: zombie (2)
Simulation of an outbreak of a zombie
infection in a closed population

blue = Humans
red = Zombies

Photo: Melbourne Zombie Shuffle by Andrew Braithwaite
Licensed under CC BY 2.0
http://www.flickr.com/photos/bratha/2578784637/

The zombie program uses a variant of the SIR model from epidemiology to
simulate an outbreak of a zombie infection in a closed (i.e. no one enters or leaves)
population. Obviously, since zombies don’t actually exist, it would be a mistake
to try and take this program too seriously. You should think of zombie as just a
program that takes some input on the command line and then produces some
output on the screen and in a file, and whose output can then be fed to yet other
programs for further processing (as we’ll see later this afternoon).
However, as it happens, the program is based on actual academic modelling of the
spread of disease, as found in Chapter 4 (pp. 133-150) of Infectious Disease
Modelling Research Progress (2009), which is entitled “When Zombies Attack!:
Mathematical Modelling of an Outbreak of Zombie Infection”, and which you can
find here:

http://mysite.science.uottawa.ca/rsmith43/zombies.pdf
And in case you are interested in the book from which that chapter is taken, the
ISBN of Disease Modelling Research Progress is 978-1-60741-347-9, it’s edited
by J. M. Tchuenche & C. Chiyaka and published by Nova Science Publishers, Inc.
Note that the zombie program writes its output to a file of numbers rather than
producing graphical output. At the end of this afternoon we will see how to
produce graphs of its output.

Version: Lent 2020 20

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 20

This page intentionally left blank
Deze bladzijde werd met opzet blanco gelaten.

このページは計画的にブランクを残ている

Ta strona jest celowo pusta.

Esta página ha sido expresamente dejada en blanco.

Эта страница нарочно оставлена пустой.

Denne side med vilje efterladt tom.

Ĉi tiu paĝo restas intence vaka.

این صفحھ خالي است

An leathanach seo fágtha folamh in aon turas.

This page intentionally left blank: nothing to see here.

Version: Lent 2020 21

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 21

Exercise from Day Two (Part One)

Improve the run_program function in
multi-run-while so that as well as
running zombie it also runs gnuplot
(using the zombie.gplt file) to plot a
graph of the output.

The multi-run-while shell script (in the scripts subdirectory of your home
directory) runs the zombie program (via a shell function called run_program) once
for each parameter set that it reads in from standard input. This exercise requires you to
modify the run_program shell function of that script so that, as well as running the
zombie program it also runs gnuplot to turn the output of the zombie program into a
graph.

One sensible way of doing this would be as follows:

1. Figure out the full path of the zombie.gplt file. Store it a shell variable
(maybe called something like gnuplot_file).

2. Immediately after running zombie, run gnuplot:
gnuplot "${gnuplot_file}"

3. Rename the zombie.png file produced by gnuplot along the same lines as
the zombie.dat file produced by zombie is renamed.

This exercise highlights one of the advantages of using functions: we can improve or
change our functions whilst leaving the rest of the script unchanged. In particular, the
structure of the script remains unchanged. This means two things: (1) if there are any
errors after changing the script they are almost certainly in the function we changed, and
(2) the script is still doing the same kind of thing (as we can see at a glance) – we’ve just
changed the particulars of one of its functions.

Version: Lent 2020 22

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 22

Solution to Part One
#!/bin/bash
set -e

Set up environment variables for program
export ZOMBIE_FORMAT="NORMAL"

Location of gnuplot file
gnuplot_file="$(pwd –P)/zombie.gplt"

…
function run_program()
{

…
 # Run program with passed arguments
 "$program" "$@" > "stdout-$1-$2-$3-$4-$5"

 # Run gnuplot
 gnuplot "$gnuplot_file"

…
 # Rename files
 mv zombie.dat "zombie-$1-$2-$3-$4-$5.dat"
 mv zombie.png "zombie-$1-$2-$3-$4-$5.png"

…
 # Write to logfile
 echo "Output file: zombie-$1-$2-$3-$4-$5.dat" >> "$log_file"
 echo "Plot of output file: zombie-$1-$2-$3-$4-$5.png" >> "$log_file"

…
}

If you examine the multi-run-while script in the scripts subdirectory
of your home directory, you will see that it has been modified as shown above
to run gnuplot after running zombie.

You should be able to tell what all the highlighted parts of the shell script
above do – if there is anything you don’t understand, or if you had any
difficulty with this part of the exercise, please let the course giver or
demonstrator know.

You can test that this script works by doing the following:
$ cd
$ rm –f *.dat *.png stdout-* logfile
$ cat scripts/param_set | scripts/multi-run-while
$ ls
You should see that there is a PNG file for each of the renamed .dat output
files. You should also inspect logfile to see what it looks like now.

Version: Lent 2020 23

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 23

Exercise from Day Two (Part Two)

Now create a new shell script based on
multi-run-while that will run zombie three times
for each parameter set the script reads in on
standard input, changing the fifth parameter each time
as follows:

For a given parameter set a b c d e, first your script
should run zombie with the parameter set:

a b c d 50
…then with the parameter set:

a b c d 500
…and then with the parameter set:

a b c d 5000

An example may help to make this task clearer. Suppose your script reads in the parameter
set:

0.005 0.0175 0.01 0.01 70
…it should then run the zombie program 3 times, once for each of the following parameter
sets:

0.005 0.0175 0.01 0.01 50
0.005 0.0175 0.01 0.01 500
0.005 0.0175 0.01 0.01 5000

Now, currently the script will read in a parameter set and then call the run_program
function to process that parameter set. Clearly, instead of passing all five parameters that the
script reads in, the new script will now only be passing the first (alpha), second (beta),
third (zeta), and fourth (delta) parameters that it has read in. However, the zombie
program requires 5 parameters (and it cares about the order in which you give them to it), so
the new script still needs to give it 5 parameters, it is just going to ignore the fifth parameter it
has read (population) and substitute values of its own instead.

There are two obvious approaches you could have taken in performing this task. One would be
to call the run_program function 3 times, once with 50 as the fifth parameter, once with 500
as the fifth parameter and once with 5000 as the fifth parameter. The other would be to use
some sort of loop that calls the run_program function, using the appropriate value (50, 500
or 5000) for the fifth parameter on each pass of the loop. I wanted you to use the loop
approach.

Version: Lent 2020 24

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 24

Solution to Part Two (1)
#!/bin/bash
set -e

…
Sizes to use instead of read in value

populations="50 500 5000"

Read in parameters from standard input
and then run program with them
and run it again and again until there are no more
while read alpha beta zeta delta junk ; do
 # Instead of using read in value for size,

 # use values from variable populations.

 # Note: *no* quotes around $populations or values will be

 # interpreted as a single value!

 for population in $populations ; do

 # Run program
 run_program "$alpha" "$beta" "$zeta" "$delta" "$population"
 done

…

If you examine the multi-50-500-5000 script in the scripts subdirectory of
your home directory, you will see that it is a version of the multi-run-while
script that has been modified as shown above.

You should be able to tell what all the highlighted parts of the shell script above do,
and you should be able to see why this is a solution to this part of the exercise – if
there is anything you don’t understand, or if you had any difficulty with this part of
the exercise, please let the course giver or a demonstrator know.

You can test that this script works by doing the following:
$ cd
$ rm –f *.dat *.png stdout-* logfile
$ cat scripts/param_set | scripts/multi-50-500-5000
$ ls
You should see that a number of PNG and .dat files have been produced. You
could view some of the PNG files to make sure they were what was expected by using
Eye of GNOME (eog) or another PNG viewer (such as Firefox).

Version: Lent 2020 25

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 25

Solution to Part Two (2)
#!/bin/bash
set -e

…
Read in parameters from standard input
and then run program with them
and run it again and again until there are no more
while read alpha beta zeta delta junk ; do
 # Instead of using read in value for size,
 # use 50, then 500, then 5000.
 population=50
 while [[$population -le 5000]] ; do
 # Run program
 run_program "$alpha" "$beta" "$zeta" "$delta" "$population"
 population="$((population * 10))"
 done

…

There is another way you could have achieved the same thing, also using a loop, but this time
using a while loop instead of a for loop. This may seem a somewhat perverse way of
doing things, but if you had a parameter that was an integer that you wished to increase by
some constant factor a large number of times, e.g. 2, 4, 8, 16, 32, 64, etc. then this would be a
better way of doing it than trying to type them all out as a list of values for a for loop.

If you examine the multi-50-500-5000-alternate script in the scripts
subdirectory of your home directory, you will see that it is a version of the
multi-run-while script that has been modified as shown above.

You should be able to tell what all the highlighted parts of the shell script above do, and you
should be able to see why this is a solution to this part of the exercise – if there is anything
you don’t understand, or if you had any difficulty with this part of the exercise, please let the
course giver or a demonstrator know.

You can test that this script works by doing the following:
$ cd
$ rm –f *.dat *.png stdout-* logfile
$ cat scripts/param_set | scripts/multi-50-500-5000-alternate
$ ls
…and examining the files produced.

Version: Lent 2020 26

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 26

Exercise from Day Two (Part Three)
Now create a new shell script, based on the script you created in the previous

part of the exercise, that does the following:
Instead of running zombie three times for each parameter set it reads in, this

script should accept a set of values on the command line, and use those
instead of the hard-coded 50, 500, 5000 previously used.

Thus, for each parameter set it reads in on standard input, it should run zombie
substituting, in turn, the values from the command line for the fifth parameter
in the parameter set it has read in.

So, if the script from the previous part of the exercise was called
multi-50-500-5000, and we called this new script multi-sizes (and
stored both in the scripts directory of our home directory), then running the
new script like this:

$ cd
$ cat scripts/param_set | scripts/multi-sizes 50 500 5000

should produce exactly the same output as running the old script with the
same input file:

$ cd
$ cat scripts/param_set | scripts/multi-50-500-5000

You may be wondering what the point of the previous script and this script
are. Consider what these scripts actually do: they take a parameter set, vary
one of its parameters and then run some program with the modified parameter
sets. Why would we want to do this?

Well, in this example the parameter we are varying specifies the size of the
population which our program will model. You can easily imagine that we
might have a simulation or calculation for which, for any given parameter set,
interesting things happened in various population sizes. These scripts allow
us to take each parameter set and run it several times for different sizes of
populations. We can then look at each parameter set and see how varying the
size of the population affects the program’s output for that parameter set.

If we were using the parameter sets in the scripts/param_set file, we
might notice that these parameters are the same except for the second
parameter which varies. So if we pipe those parameter sets into one of these
scripts, we are now investigating how the output of the zombie program
varies as we vary two of its input parameters, which is kinda neat, doncha
think? ☺

Version: Lent 2020 27

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 27

Solution to Part Three
#!/bin/bash
set -e

…
Read in parameters from standard input
and then run program with them
and run it again and again until there are no more
while read alpha beta zeta delta population junk ; do
 # Instead of using read in value for size,
 # cycle through command line arguments.
 for population in "$@" ; do
 # Run program
 run_program "$alpha" "$beta" "$zeta" "$delta" "$population"
 done

…

If you examine the multi-sizes script in the scripts subdirectory of
your home directory, you will see that it is a version of the multi-50-500-
5000 script that has been modified as shown above.

You should be able to tell what all the highlighted parts of the shell script
above do, and you should be able to see why this is a solution to this part of
the exercise – if there is anything you don’t understand, or if you had any
difficulty with this part of the exercise, please let the course giver or a
demonstrator know.

You can test that this script works by doing the following:
$ cd
$ rm –f *.dat *.png stdout-* logfile
$ cat scripts/param_set | scripts/multi-sizes 50 500 500
$ ls

You should see that a number of PNG and .dat files have been produced.

Version: Lent 2020 28

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 28

What else are tests good for?

We have seen that we can use tests in
while loops. What else are they good
for?

Suppose we know some (valid)
parameters for our program produce no
interesting output. Could we use some
tests to filter these out?

Version: Lent 2020 29

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 29

Using tests (1)
We’ve met (integer) arithmetic tests.

Suppose we’d like to test to see whether some of
our parameters are within a certain range (say
1 to 1000000). If they are not, we shouldn’t do
anything, i.e.

If parameter < 1 or parameter > 1000000 stop
executing the script…

How do we do this?

Version: Lent 2020 30

We can decide whether a collection of commands should be executed
using an if statement. An if statement executes a collection of
commands if and only if the result of some command or test is true.
(Recall that the result of a command is considered to be true if it
returns an exit status of 0 (i.e. if the command succeeded)).

Note that even if set -e is in effect, or the first line of our shell
script is
#!/bin/bash -e
the shell script will not exit if the result of the command or test the
if statement depends on is false (i.e. it returns a non-zero exit
status), since if it did, this would make if statements fairly
useless(!).

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 30

commands
to do if true

Failure

Success

command
(or test)

rest
of script

if statement
Do something only
if some command
(or test) is true

Version: Lent 2020 31

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 31

if
Do something only if some command is

true

if <command> ; then
 <some commands>
fi

We use an if statement like this:
if <command> ; then

<some commands>
fi

where <command> is either a command or a test, and <some
commands> is a collection of one or more commands. Note that if
<command> is false the shell script will not exit, even if set -e is in effect,
or the first line of the shell script is #!/bin/
bash -e

In a similar manner to for and while loops, you can put the then on a
separate line, in which case you can omit the semi-colon (;), i.e.

if <command>
then

<some commands>
fi

Now, we just need to know how to tell our script to stop executing and we will
have all the pieces we need to modify our script to behave the way we want…

Version: Lent 2020 32

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 32

exit
To stop executing a shell script:

exit

…can explicitly set an exit status thus:

exit value

The exit shell builtin command causes a shell script to exit (stop executing)
and can also explicitly set the exit status of the shell script (if you specify a
value for the exit status).
Recall that the exit status is an integer between 0 and 255, and should be 0
only if the script was successful in what it was trying to do. If the script
encounters an error it should set the exit status to a non-zero value.

If you don’t give exit an exit status then the exit status of the shell script
will be the exit status of the last command executed by the script before it
reached the exit shell builtin command.

(If you don’t have an exit shell builtin command in your shell script, then
your script will exit when it executes its last command. In this case its exit
status will be the exit status of the last command executed by your script.)

Version: Lent 2020 33

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 33

Using if (and tests)
File: scripts/multi-sizes
#!/bin/bash
set -e

…
while read alpha beta zeta delta population junk ; do
 # Instead of using read in value for size,
 # cycle through command line arguments.
 for population in "$@" ; do

 if [[$population -lt 1]] ; then
 echo "Size of population ($population) must be positive!"
 exit 1
 fi
 if [[$population -gt 1000000]] ; then
 echo "Population ($population) too large!"
 exit 1
 fi

 # Run program

…

Modify the multi-sizes script in the scripts subdirectory of your home
directory as shown above. (Make sure to save it after you’ve modified it.)

What do you think these modifications do?

Note that if we exit the script because one of the command line arguments is
incorrect, then we need to indicate that there was a problem running the script,
so we set our exit status to a non-zero value (1 in this case, which is the
conventional value to use if we don’t set different values for the exit status for
different types of error).

You can test that this script works by doing the following:
$ cd
$ rm –f *.dat *.png stdout-* logfile
$ cat scripts/param_set | scripts/multi-sizes 0
Size of population (0) must be positive!
$ cat scripts/param_set | scripts/multi-sizes 2000000
Population (2000000) too large!

Version: Lent 2020 34

We are already familiar with standard output as a “channel” along which our program or
shell script’s output is sent to somewhere. By default, this “somewhere” will be the screen,
unless we redirect it to somewhere else (like a file).

Standard output is one of the standard streams that all programs (whether they are shell
scripts or not) have. (The idea of a stream here is that there is a “stream” of data flowing
to/from our program and to/from somewhere else, like the screen.) Another standard stream
that we have already met is standard input (which by default comes from the keyboard unless
we redirect it).

There is actually a third standard stream called standard error. Like standard output, this is
an “output stream” – data flows from our program along this stream to somewhere else. This
stream is not for ordinary output though, but for any error messages our program may
generate (and by default it also goes to the screen).

Why have two output streams? The reason is that this allows error messages to be easily
separated from a program’s output, e.g. for ease of debugging, etc.

For more information on standard error and the other standard streams (standard input and
standard output) see the following Wikipedia article:

https://en.wikipedia.org/wiki/Standard_streams

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 34

standard
input

program
(shell script in
our case)

standard
output

standard
error

By default, this comes
from the keyboard

By default, this goes to
the screen

By default, this also
goes to the screen

Program I/O

Version: Lent 2020 35

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 35

Standard Error (1)
$ ls zombie
zombie

$ ls zombie zzzzfred
/bin/ls: zzzzfred: No such file or directory

zombie
$ ls zombie zzzzfred > stdout-ls
/bin/ls: zzzzfred: No such file or directory

$ cat stdout-ls
zombie

If we look at what happens when a standard Unix command, such as ls,
encounters an error, the way standard error works may become clearer.

When we ask ls to list a non-existent file, it prints out an error message. If
we redirect the (standard) output of ls to a file, we see that the error message
still goes to the screen. This is because the error message does not go to
standard output, but to standard error. If we wanted to send the error message
to file we would need to redirect standard error to that file.

So how do we manipulate standard error?

Please note that the output of the ls command may not exactly match what is shown on
this slide – in particular, the colours may be slightly different shades.

Version: Lent 2020 36

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 36

Standard Error (2)
To redirect standard error to a file we use

the following construct:

command 2> file

To send the output of a command to
standard error, we use the following
construct:

command >&2

Note that there is no space between the “2” and the “>” or the
“>” and the “&2”, i.e.
it is “2>” not “2 >”
and “>&2” not “> &2” or “> & 2”

This is very important – if you put erroneous space characters in
these constructs, the shell will not understand what you mean
and will either produce an error message, or worse, do the
wrong thing.

Version: Lent 2020 37

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 37

Using standard error
File scripts/multi-sizes
#!/bin/bash
set -e

…
while read alpha beta zeta delta junk ; do
 # Instead of using read in value for size,
 # cycle through command line arguments.
 for population in "$@" ; do

 if [[$population -lt 1]] ; then
 echo "Size of population ($population) must be positive!" >&2
 exit 1
 fi
 if [[$population -gt 1000000]] ; then
 echo "Population ($population) too large!" >&2
 exit 1
 fi

 # Run program

…

Modify the multi-sizes script in the scripts subdirectory of your
home directory as shown above. (Remember to save it after you’ve made
the above changes or they won’t take effect.)

Since when we exit the script because we don’t like one of the parameters,
we consider this an error, the message we print out telling the user what the
problem is is an error message, and so should go to standard error rather
than standard output. This is what adding “>&2” to those echo shell
builtin commands does.

This is the conventional behaviour for shell scripts (or indeed any other
program) – ordinary output goes to standard output, error messages go to
standard error. It is very important that you follow this convention when
writing your own shell scripts as this is what anyone else using them will
expect them to do.

Version: Lent 2020 38

The multi-sizes shell script is in the scripts directory of your home directory.
Your task is to add a shell function to this script that the script can use to check all the
command line parameters it has been given to ensure they are between 1 and 1000000
(you can assume the parameters are integers), and then to modify the script to call that
function before it does anything significant. Above I’ve given you the skeleton of
what the modified script should look like. You should be able to fill in the rest. Make
sure you save your script after you’ve modified it.

Note that you need to (re)move the if statements that we’ve added to the shell script
as once we use the check_args function we will have already checked the command
line arguments by the time we enter the while loop, and there is no point in checking
them twice.

When you finish this exercise, take a short break and then we’ll start again with the
solution.

Note that in the skeleton above I call the check_args function before I use the
mktemp command – there’s no point in creating a temporary directory if I’ve been
given bad parameters and am going to abort my script…

Hint: We’ve actually already written most of the function – so you can cut-and-paste those lines of the current shell script into the
function. You then need to somehow loop through all the function’s arguments, checking each in turn.

Version: Lent 2020 39

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 39

More tests (1)
Test to see if something is true:

[[<expression>]]
or: test <expression>
where <expression> can be any of a

number of things such as:
[[-z "$a"]]
[["$a" = "$b"]]
[[-e "filename"]]

As well as the (integer) arithmetic tests we have already met, there are a number of other
tests we can do. They fall into two main categories: tests on files and tests on strings.
There are many different such tests and we only list a few of the most useful below:

–z "a" true if and only if a is a string whose length is zero
"a" = "b" true if and only if the string a is equal to the string b
"a" == "b" true if and only if the string a is equal to the string b
"a" != "b" true if and only if the string a is not equal to the string b
–d "filename" true if and only if the file filename is a directory
–e "filename" true if and only if the file filename exists
–h "filename" true if and only if the file filename is a symbolic link
–r "filename" true if and only if the file filename is readable
–x "filename" true if and only if the file filename is executable

You can often omit the quotation marks but it is good practice to get into the habit of
using them, since if the strings or file names have spaces in them then not using the
quotation marks can be disastrous. (Note that string comparison is always done case
sensitively, so “HELLO” is not the same as “hello”.)
You can get a complete list of all the tests

looking in the CONDITIONAL EXPRESSIONS section of bash’s man page (type “man
bash” at the shell prompt to show bash’s man page.)

Version: Lent 2020 40

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 40

More tests (2)
We can negate an expression, i.e. test to see whether the

expression was false, using ! thus:

[[! <expression>]]
or: test ! <expression>

The above are true if and only if <expression> is false, e.g.

[[! -z "$a"]]
is true if and only if $a is a string whose length is not zero.

We can also use ! with a command in an if statement or
while loop to mean only do whatever the if or while is
supposed to do if the command fails (i.e. its exit status is
not 0).

Remember that in a while loop or an if statement we can use commands as well as tests.
The command is considered true if it succeeds, i.e. its exit status is 0. In a while loop or an
if statement we can negate a command in exactly the same way we negate <expression>,
using ! – negating a command means that the while loop or if statement will only consider
it true if the command fails, i.e. its exit status is non-zero.
So:

while ! ls datafile ; do

echo "Can't list file datafile!"

done

…would print the string “Can't list file datafile!” on the screen as long as ls
was unable to list the file datafile, i.e. as long as the ls command returns an error when it
tries to list the file datafile (for instance, if the file didn’t exist).

Similary:
if ! ./zombie ; then

echo "Unable to run ./zombie successfully"

fi

…will only print the message “Unable to run ./zombie successfully” if the
zombie program in the current directory returns a non-zero exit status (i.e. it fails for some
reason).
N.B. [[! -z $a]] is equivalent to the test [[-n $a]]

Version: Lent 2020 41

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 41

Using tests (2)
File scripts/multi-sizes
#!/bin/bash
set -e

function check_args()
{
This function checks all the arguments it has been given

Make sure that we have some command line arguments.

if [[${#} = 0]] ; then

 echo "No arguments given." >&2

 echo "This script takes one or more population sizes as its arguments." >&2

 echo "It requires at least one argument." >&2

 exit 1

fi

…

Modify the multi-sizes script in the scripts subdirectory of your home
directory as shown above. (Remember to save it after you’ve made the above
changes or they won’t take effect.)

Now we not only complain if we have arguments that are out of range, we also
complain if we have no arguments at all (and also if our first argument is an empty
string). Try this script out now and see what happens:

$ cd
$ cat scripts/param_set | scripts/multi-sizes
Invalid argument or no arguments given.
This script takes one or more population sizes as its arguments.
It requires at least one argument.

Note also that we are once again making use of the fact that we have separated some
functionality from our script and put it in a function. We can easily change the
function without complicating the rest of the script or affecting its structure.

Version: Lent 2020 42

As well as deciding whether a collection of commands should be
executed at all, we can also decide whether one or other of two
collections of commands should be executed using a more
advanced form of the if statement. If there is an else section to
an if statement the collection of commands in the else section
will be executed if and only if the command (or test) we are
evaluating is false.

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 42

commands
to do if true

False

True

command
(or test)

rest
of script

commands
to do if false

if…then…else
Do something only
if some command
(or test) is true,
else (i.e. if the
command is false)
do something else

Version: Lent 2020 43

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 43

if…then…else
Do something only if some command is true,

else (i.e. if the command is false) do
something else.

if <command> ; then
 <some commands>
else
 <some other commands>
fi

As well as deciding whether a collection of commands should be
executed at all, we can also decide whether one or other of two
collections of commands should be executed using a more
advanced form of the if statement. If there is an else section to
an if statement the collection of commands in the else section
will be executed if and only if the given <command> is false.
Note the syntax above.

Version: Lent 2020 44

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 44

Using if…then…else
File: scripts/multi-sizes
#!/bin/bash
set -e

…
function multi_sizes()
{
Instead of using read in value for size,
cycle through arguments passed to function.

 for population in "$@" ; do

 # Run program
 run_program "$alpha" "$beta" "$zeta" "$delta" "$population"

 done
}

…
while read alpha beta zeta delta population junk ; do

 if [[${#} = 0]] ; then
 # If there are no arguments then use these defaults
 echo "Using default population sizes: 50, 500, 5000"
 multi_sizes "50" "500" "5000"
 else
 # Use the command line arguments
 multi_sizes "$@"
 fi

done

Open up the multi-sizes-default script in the scripts subdirectory of your
home directory in your favourite editor (or gedit) and have a look at it.

Notice that the check_args function in this script doesn’t complain if there are no
command line arguments. This is because this script will use some default parameters if
it hasn’t been given any on the command line. (And note that we print a message on the
screen so the person using our script knows its using default values and what those
values are.)

Pay particular attention to the bits of the script highlighted above. Can you work out
what we’ve changed and how the shell script will now behave? If not, please tell the
course giver or a demonstrator what part of the script you don’t understand.

Try out this script and see what happens:
$ cd
$ rm –f *.dat *.png stdout-* logfile
$ cat scripts/param_set | scripts/multi-sizes-default
$ ls

Note that we didn’t need to create a separate multi_sizes function – we could have
just typed out very similar lines of shell script twice. This would have been a mistake –
just like with real programming languages, repetition of parts of our script (program) are
almost always to be avoided.

Version: Lent 2020 45

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 45

Better error handling (1)
At the moment, any errors stop our script

dead. Often, that’s better than letting it
carry on regardless, but sometimes we
want to be a bit more sophisticated.

For instance, supposing a few parameter
sets we read in are corrupt and cause
errors in zombie or gnuplot – we
might want to note which ones these
were and continue with the others.

How can we do this?

Version: Lent 2020 46

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 46

return
Just like programs and shell scripts have an exit status, so too do

shell functions (although it is unwise to try and make significant
use of these). We can set the exit status of a function using the
return shell builtin command, and when we use return we
should always explicitly set the exit status (normally to 0).

To stop executing a function and safely return
to wherever we were called from, use:

return 0
…we can set a non-zero exit status as we exit

the function thus (where value is between 1
and 255):

return value

The return shell builtin command causes a shell function to stop
executing and return control to whatever part of the shell script called it. It
can also explicitly set the exit status of the function, and when we use
return we should explicitly set the status (normally to 0).
As with ordinary programs and shell scripts themselves, the exit status of a
shell function is an integer between 0 and 255, and, as one might expect, the
convention is that the exit status should be 0 only if the function was
successful in what it was trying to do. Unfortunately, if the function returns
a non-zero exit status, this can cause very subtle (i.e. difficult to track down)
types of misbehaviour, so it is actually safest to always use return with an
exit status of 0 (i.e. “return 0”).

(If you don’t give return an exit status then the exit status of the shell function will
be the exit status of the last command executed by the function before it reached the
return shell builtin command, but this can lead to extremely subtle types of
misbehaviour – use “return 0” instead.

And if you don’t have a return shell builtin command in your shell function, then
your function will exit when it executes its last command. In this case its exit status
will be the exit status of the last command executed in your function – this can also
cause subtle problems, so your functions should really always end with “return
0”.)

Version: Lent 2020 47

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 47

Better error handling (2)
File: scripts/multi-sizes
#!/bin/bash
set -e

…
function multi_sizes()
{
Instead of using read in value for size,
cycle through arguments passed to function.

for population in "$@" ; do

 # Assume parameter set will work

 bad_parameter="0"

 # Run program
 run_program "$alpha" "$beta" "$zeta" "$delta" "$population"

 # Report if there were problems

 if [[$bad_parameter -gt 0]] ; then

echo "Problem with parameter set: $alpha $beta $zeta $delta $population" >&2

 fi

done
}

…

Open up the multi-sizes-errors script in the scripts
subdirectory of your home directory in your favourite editor (or
gedit) and have a look at it.

First have a look at the multi_sizes function, paying particular
attention to the bits of the script highlighted above. Can you guess
why we’ve changed this function like this?

If we look at the run_program function and see how that’s been
changed it should become clear why we’ve changed the
multi_sizes function this way. First though, we need to learn
how to toggle the shell’s “quit on any error” behaviour on and off
at will…

Version: Lent 2020 48

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 48

set -e, set +e
Abort shell script if an error occurs:

set -e

Abort shell script only if a syntax error is
encountered (default):

set +e

We already know that if the first “magic” line of our shell script is:
#!/bin/bash –e

then the shell script will abort if it encounters an error. We also know we can make
this happen by using set -e instead, if we prefer.

Sometimes though, we may want to handle errors ourselves, rather than just having
our shell script fall over in a heap. So it would be nice if we could turn this
behaviour off and on at the appropriate points in the shell script, and bash provides
a mechanism for us to do just that:

• As we know, set -e tells the shell to quit when it encounters an error in the
shell script. Whenever you are not doing your own error handling (i.e.
checking to make sure the commands you run in your shell script have
executed successfully), you should use set –e.

• set +e returns to the default behaviour of continuing to execute the shell
script even after an error (other than a syntax error) has occurred.

A good practice to get into is to always have the following as the first line of your
shell script that isn’t a comment (i.e. doesn’t start with a #):

set –e

and then to turn this behaviour off only when you are actually dealing with the
errors yourself.

Version: Lent 2020 49

Now look at the run_program function in the multi-sizes-errors script, paying
particular attention to the bits of the script highlighted above.

Can you work out what the highlighted bits are doing? Recall that the exit status of the last
command that ran is stored in the special shell parameter ?.

We observe that the logic of this function is that if the zombie program failed there’s no point
running gnuplot (“garbage in, garbage out”). We need to look a bit further down the
function’s definition (not shown above) to see what it does if gnuplot fails. Can you work
out what it is doing (and why)?

If you are not sure, or you have any questions, please ask the course giver or a demonstrator.

You should try out this script and see what it does:
$ cd
$ rm –f *.dat *.png stdout-* logfile
$ cat scripts/bad_param_set | scripts/multi-sizes-errors
recovery (gamma) must be positive
Problem with parameter set: 1.0 -3.0 0.0005 50
recovery (gamma) must be positive
Problem with parameter set: 1.0 -3.0 0.0005 500
recovery (gamma) must be positive
Problem with parameter set: 1.0 -3.0 0.0005 5000

$ ls
The file bad_param_set contains one bad parameter set mixed in amongst some good ones, as you can see
by inspecting it.

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 49

Better error handling (3)
File: scripts/multi-sizes
#!/bin/bash
set -e

…
function run_program()
{

…
Run program with passed arguments
set +e
"$program" "$@" > "stdout-$1-$2-$3-$4-$5"
program_error=$?
set -e

Run gnuplot only if the program succeeded
if [[$program_error -eq 0]] ; then

set +e
gnuplot $gnuplot_file"
gnuplot_error=$?
set -e

else
rm -f running-zombie
bad_parameter=1
echo "Failed! Exit status: $program_error" >> "$log_file"
return 0

fi

…
echo "Standard output: stdout-$1-$2-$3-$4-$5" >> "$log_file"

}

…

Version: Lent 2020 50

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 50

Nested ifs (1)
Do something only if some expression is true,

else do another thing if another expression is
true…and so on

if <command1> ; then
 <some commands>
elif <command2> ; then
 <some other commands>
elif <command3> ; then
 <yet other commands>

…
else
 <other commands>
fi

We can have even more complicated if statements than those we have met. We
can nest if statements: if one command (or test) is true, do one thing, if a different
command (or test) is true do something else and so on, culminating in an optional
else section (“if none of the previous expressions were true, do this”).

One of the easiest ways of doing this is by using elif (short for else if) for all
the alternative expressions we want to test.

Why would we do this? Imagine that we had a shell script that could do several
different things and the decision as to which it should do was made by the user
specifying different arguments on the command line. We might want our script to
have the following logic: if the user said “a” do this, else if they said “b” do that,
else if they said “c” do something else, and so on, ending with else if they said
something that was none of the previous things say “I don’t know what you are
talking about”.

There are better ways to do that than using this sort of if statement, but they
involve a construct (case) and a shell builtin command (shift) that we cover on
the optional final day of this course.

Version: Lent 2020 51

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 51

Nested ifs (2)
#!/bin/bash

…
if [[$1 = "one"]] ; then
 first_function
elif [[$1 = "two"]] ; then
 second_function
elif [[$1 = "three"]] ; then
 third_function
elif [[$1 = "four"]] ; then
 fourth_function
else
 echo "Huh?" >&2
 exit 1
fi

$ cd
$ examples/nested-if one

In the examples subdirectory there is a silly shell script called
nested-if that illustrates the nested if construct. The heart
of the script is shown above – first_function,
second_function, third_function and
fourth_function are all shell functions defined in the
script.

Try the script out and see what it does. Although it’s a silly
example, it should give you an idea of the sort of useful things
for which you can use such scripts.

Version: Lent 2020 52

The multi-sizes-errors shell script is in the scripts directory of your home
directory. Your task is to modify this script – mainly the multi_sizes function – so
that the multi_sizes function prints out different messages on standard error
depending on whether it was zombie or gnuplot that failed. Make sure you save your
script after you’ve modified it.

Some of you may be tempted to just dispense with bash’s “exit the shell script on any
error” feature for this exercise. Don’t – part of the purpose of this exercise is to get used
to how the shell handles errors and how you work with this.
Remember that this shell script attempts to change directory – a very dangerous thing to
do in a shell script, so you must make sure that if the script fails to change directory that
it exits and doesn’t try to do things in the wrong directory. The easiest way to do that is
to have set -e in effect.

One approach that may occur to you is to make the function that runs zombie and
gnuplot return different exit statuses depending on which of them failed. Don't do
this – it fails in an extremely subtle way (which we'll look at later).

When you finish this exercise, take a short break and then we’ll start again with the
solution. (Yes, I really do mean “a break from the computer”.)

Hint: One approach is to get the run_program function to set a shell variable to different values depending on whether it was zombie or
gnuplot that failed. You could then test for this in the multi_sizes function.
Another hint: You may wish to use nested if statements, although they aren’t the only way to do this exercise.

Version: Lent 2020 53

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 53

set -e revisited (1)
File: examples/function-exits
#!/bin/bash
set -e

function fail()
{
 # This function should always cause the script
 # to exit with a non-zero exit status
 echo "In function $FUNCNAME."
 set -e
 false
 echo "You should never see this message."
}

echo "About to run function fail."
fail
echo "Just ran function fail."

$ cd
$ examples/function-exits

In the examples subdirectory there is a shell script called
function-exits which defines a function called fail. If we
examine the function (shown on the slide above) we might hope
that it would always trigger bash’s “exit the shell script on any
error” feature (set -e). (Recall that false does nothing but
returns a non-zero exit status, i.e. an error.)

Try the script out and see what it does…

(You should observe that the lines:
echo "You should never see this message."

echo "Just ran function fail."

are never executed, and if you check the exit status of the shell
script:
$ echo $?

you should observe it is non-zero: the shell script exited because the
false command returned a non-zero exit status (i.e. it caused an
“error”).)

Version: Lent 2020 54

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 54

set -e revisited (2a)
File: examples/function-should-exit
#!/bin/bash
set -e

function fail()
{
 # This function should always cause the script
 # to exit with a non-zero exit status
 echo "In function $FUNCNAME."
 set -e
 false
 echo "You should never see this message."
}

echo "About to run function fail."
if fail ; then

 echo "Woo-hoo! Function fail succeeded."

else

 echo "Nooooo! Function fail didn't work."

fi

$ cd
$ cat examples/function-should-exit

Now look at the function-should-exit script in the
examples subdirectory (shown on the slide above).

We might expect that, because we use set -e within the
function fail, when we run that function it will cause the script
to exit. But is this, in fact, the case?

Stop and think carefully about what messages you think this
script would print on the screen if you ran it…

Version: Lent 2020 55

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 55

set -e revisited (2b)
Which of the following messages will you see if you

run the function-should-exit script?:

1. In function fail.

2. You should never see this message.

3. About to run function fail.

4. Woo-hoo! Function fail succeeded.

5. Nooooo! Function fail didn't work.

$ cd
$ examples/function-should-exit

…and now run the function-should-exit script in the
examples subdirectory and see which of the messages above it
actually prints on the screen.

We might have expected that, because we use set -e within
the function fail, when we run that function it will cause the
script to exit. However, because we run the function as the
command checked by an if statement, this doesn't happen! (We
would have the same problem if we ran the function as the
command checked by a while loop.)

Basically, if you run a shell function as the command checked by
an if statement or a while loop, set -e is disabled whilst
the function is running, even if you explicitly use it within the
function. This makes using shell functions as the command
checked by an if statement or a while loop extremely
dangerous, so we advise you not to do it.

Version: Lent 2020 56

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 56

Give us Feedback!

Please make sure that you fill in the
Course Review form online, accessible
under “feedback” on the main MCS Linux
menu, or via:

http://feedback.training.cam.ac.uk/uis/

Version: Lent 2020 57

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 57

Final exercise
In your home directory is a program called infect, which is a simulation of the spread of
infection in a closed population using a variant of the SIR model used in epidemiology. It
prints its output (which are points on various graphs) to standard output and sends
information about the parameters it has used to standard error. infect takes three
floating point command line arguments and one integer command line argument. (It can
also optionally take another three command line arguments (one floating point number, two
integers) but we won’t make use of those.)
In the gnuplot subdirectory there is a file of gnuplot commands called infect.gplt
that can be used to plot the data produced by infect – the commands in this file expect
their input to be in a file called infect.dat in the current directory, and they produce a
PNG file called infect.png (also in the current directory).
Write a shell script that will read the first three parameters for infect from standard
input and the fourth parameter from the command line. It should run the infect
program, turning its output into a graph using gnuplot. The following should illustrate
how to combine the parameters from these two sources – suppose you read the
following values from standard input:

 1.0 0.1 0.0005 70
 2.0 0.1 0.0005 250

…and the values 100 800 from the command line, then your script should run:
./infect 1.0 0.1 0.0005 100
./infect 1.0 0.1 0.0005 800
./infect 2.0 0.1 0.0005 100
./infect 2.0 0.1 0.0005 800

Please read this BEFORE you start on this exercise!
The point of this exercise is to consolidate everything you’ve learnt in this course thus far. To
that end I want you to write your own shell script FROM SCRATCH to do this exercise – do
not just take one of the ones we’ve constructed over this course and change the names of the
programs it runs. Whilst you could certainly get an answer to this exercise that way, you
wouldn’t learn very much.
Also, I want your shell script to be as good a shell script as you can possibly make it – it
should:
§ be well structured using shell functions,
§ be fully commented,
§ do some error handling,
§ keep a log file of what it is doing,
§ print its error messages on standard error,
§ use a temporary directory for working in,
§ do some checking of its input,
§ etc

There is a file in the scripts subdirectory called infect_params that you can use as a
source of parameters to read via standard input. I suggest that for the command line
arguments you use:

75 100 300 3000 50000

The files you need to do this exercise are available on-line at:
https://help.uis.cam.ac.uk/help-support/training/downloads/course-files/

programming-student-files/shellscriptingsci/shellscripting-files/
exercises/day-three

Version: Lent 2020 58

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 58

What is infect?

Simulation of the spread of infection in a
closed population (a variant of the SIR
model used in
epidemiology)

green = Susceptible
red = Infected
black = Recovered

For the curious: the infect.py program uses a variant of the SIR model to
simulate the spread of an infection in a closed (i.e. no one enters or leaves)
population. The SIR model is what is called a compartmental model in
epidemiology. In such models the population is divided into a series of mutually
exclusive categories (“compartments”). In the SIR model the categories are
“Susceptible” (those susceptible to infection who have not yet caught it),
“Infected” (those who have the infection) and “Recovered” (those who have
recovered from the infection or who have natural immunity). (It is assumed that
once you have recovered from the infection you can't be re-infected.)
The SIR model is a simple model that works well for modelling the spread of
infectious diseases such as measles, mumps and rubella.
In the variant of the model used by the infect.py program, births and deaths
have been added to the model (these are called “demographic events”), and the
model is stochastic (i.e. events occur randomly according to how probable they
are). However, so that it is easier to compare parameter sets, the default behaviour
of the program is to use a fixed sequence of pseudo-random numbers, which
means that given the same set of input parameters it should produce the same
output.
The infect.py program writes its output to the screen as a collection of
numbers rather than producing graphical output. If we capture that output to a file,
we can then use that file to produce graphs of its output.

Version: Lent 2020 59

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 59

Running infect (1)
$./infect 1.0 0.1 0.0005 500

…
 2.004760 172.000000 0.000000 314.000000
 2.004760 172.000000 0.000000 313.000000

SIR model (including births and deaths) with [event-driven] demographic stochasticity

Population size: 5.0000e+02
Model run time: 2.0e+00 years

Initial number of susceptible individuals: 5.000e+01
Initial number of infected individuals: 3.000e+00

Transmission rate (beta): 1.000000e+00
Recovery rate (gamma): 1.000000e-01
Per capita birth [and death] rate (mu): 5.000000e-04

Model took 1.506090e-02 seconds

The infect.py program is in your home directory. It is a program
written specially for this course, but we’re using it as an example
program for pretty general tasks you might want to do with many
different programs. Think of infect.py as just some program that
takes some input on the command line and then produces some output
(in its case on the screen, but it could just as easily send its output to one
or more files, or send some output to one or more files and some output
to the screen), e.g. a scientific simulation or data analysis program.

The infect.py program takes 4 numeric arguments on the command
line: 3 positive floating-point numbers and 1 positive integer. It always
writes its output to standard output, and also writes some informational
messages to the standard error.

Version: Lent 2020 60

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 60

Running infect (2)
$./infect 1.0 0.1 0.0005 500 >infect.dat
SIR model (including births and deaths) with [event-driven] demographic stochasticity

Population size: 5.0000e+02
Model run time: 2.0e+00 years

Initial number of susceptible individuals: 5.000e+01
Initial number of infected individuals: 3.000e+00

Transmission rate (beta): 1.000000e+00
Recovery rate (gamma): 1.000000e-01
Per capita birth [and death] rate (mu): 5.000000e-04

Model took 1.506090e-02 seconds

As before, we have also provided a gnuplot script, in
gnuplot/infect.gplt, that will produce graphs of the
data output by infect if that data is in infect.dat.

The infect.py program sends its output to standard output,
which we know how to capture to a file. Note that it also sends
some information to standard error and this will not be
captured by redirecting standard output to a file.

Version: Lent 2020 61

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 61

Running infect (3)
$./infect 1.0 0.1 0.0005 500 2>info

…
 1.950702 169.000000 0.000000 316.000000
 1.950702 170.000000 0.000000 316.000000
 1.955447 170.000000 0.000000 316.000000
 1.955447 171.000000 0.000000 316.000000
 1.961349 171.000000 0.000000 316.000000
 1.961349 170.000000 0.000000 316.000000
 1.975273 170.000000 0.000000 316.000000
 1.975273 170.000000 0.000000 315.000000
 1.982251 170.000000 0.000000 315.000000
 1.982251 171.000000 0.000000 315.000000
 1.984463 171.000000 0.000000 315.000000
 1.984463 171.000000 0.000000 314.000000
 1.986952 171.000000 0.000000 314.000000
 1.986952 172.000000 0.000000 314.000000
 2.004760 172.000000 0.000000 314.000000
 2.004760 172.000000 0.000000 313.000000

We can capture the messages that infect sends to
standard error by redirecting standard error to a file.
Note that this has no effect on what infect sends to
standard output.

Version: Lent 2020 62

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 62

Running infect (4)
$./infect 1.0 0.1 0.0005 500 >infect.dat 2>info
$

We can control the format of the numbers in the informational
messages with the environment variable INFECT_FORMAT:

$ INFECT_FORMAT=NORMAL ./infect 1.0 0.1 0.0005 500
…

 2.004760 172.000000 0.000000 314.000000
 2.004760 172.000000 0.000000 313.000000

SIR model (including births and deaths) with [event-driven] demographic stochasticity

Population size: 50
Model run time: 2.0 years

Initial number of susceptible individuals: 50
Initial number of infected individuals: 3

Transmission rate (beta): 1.0000

…

We can capture both standard output and standard error,
to separate files, for infect as shown above: standard
output will be redirected to the file infect.dat in the
current directory and standard error will be redirected to
the file info in the current directory.

Also, we can control the format of the numbers in the
informational messages of the infect program using
the INFECT_FORMAT environment variable. If we set
the value of this variable to

NORMAL
then the numbers in the infect program’s
informational messages will not be in scientific notation
(standard form).

Version: Lent 2020 63

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 63

Final exercise – Files

All the files (scripts, the infect and zombie
programs, etc) used in this course are
available on-line at:

https://help.uis.cam.ac.uk/
help-support/training/downloads/

course-files/programming-student-files/
shellscriptingsci/shellscripting-files/

exercises/day-three

If you are stuck for how to go about doing this exercise,
have a look at the page after the next one for some ideas.

Version: Lent 2020 64

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 64

This page intentionally left blank
Deze bladzijde werd met opzet blanco gelaten.

このページは計画的にブランクを残ている

Ta strona jest celowo pusta.

Esta página ha sido expresamente dejada en blanco.

Эта страница нарочно оставлена пустой.

Denne side med vilje efterladt tom.

Paĝon intence vaka.

این صفحھ خالي است

An leathanach seo fágtha folamh in aon turas.

This page intentionally left blank: nothing to see here. If you’re
stuck for how to go about doing the exercise, please see the next
page.

Version: Lent 2020 65

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 65

Final exercise – Plan of action
What we want to do is:
1. Run infect with some parameters, capturing its output to

infect.dat, and the messages it writes to standard error
to info-param1-param2-param3-param4

$ INFECT_FORMAT=NORMAL ./infect 1.0 0.2 0.1 30
>infect.dat 2>info-1.0-0.2-0.1-30

2. Run gnuplot with infect.gplt file
$ gnuplot infect.gplt

3. Rename created files (infect.dat, infect.png)
$ mv infect.dat infect-1.0-0.2-0.1-30.dat
$ mv infect.png infect-1.0-0.2-0.1-30.png
4. Repeat the above steps for all the parameter sets…
5. Checking our input (where we can) to make sure it is

sensible before running infect, and…
6. Handling errors properly.

So for this exercise you need to create a shell script that basically does
the above task. When writing a shell script that is at all complicated, it
is best to first plan it out, and one way of doing that is to describe what
the shell script should do as a numbered list.

Basically, we want to run the infect program several times with a
different parameter set each time, plotting its output on a graph each
time. After each run, we rename the files we’ve created so that they
don’t get overwritten.

Steps 1-3 can be straightforwardly achieved by writing a shell function
that runs infect, then gnuplot, and then renames the files that have
been created.

For step 4 we loop through the parameter sets. This is slightly more
complicated than simply using a single loop since one of the parameters
comes from standard input and the other from the command line. For
step 5 we improve our shell script so that it checks its command line
arguments. For step 6 we further improve our shell script to do some
sensible error handling.

Version: Lent 2020 66

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 66

Give us Feedback!

Please make sure that you fill in the
Course Review form online, accessible
under “feedback” on the main MCS Linux
menu, or via:

http://feedback.training.cam.ac.uk/uis/

