
  

Version: Lent 2020 1

Simple Shell Scripting for 
Scientists

Anna Langley
Ben Harris

University of Cambridge Information Services

Day Two

  

Version: Lent 2020 2

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 2

Introduction• Who:
§ Anna Langley, Infrastructure Division, UIS
§ Ben Harris, Infrastructure Division, UIS

• What:
§ Simple Shell Scripting for Scientists course, Day One
§ Part of the Scientific Computing series of courses

• Contact (questions, etc):
§ scientific-computing@uis.cam.ac.uk

• Health & Safety, etc:
§ Fire exits

• Please use mobiles considerately

As this course is part of the Scientific Computing 
series of courses run by the University 
Information Services, all the examples that we 
use will be more relevant to scientific computing 
than to system administration, etc.
This does not mean that people who wish to 
learn shell scripting for system administration 
and other such tasks will get nothing from this 
course, as the techniques and underlying 
knowledge taught are applicable to shell scripts 
written for almost any purpose.  However, such 
individuals should be aware that this course was 
not designed with them in mind.



  

Version: Lent 2020 3

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 3

We finish at:

17:00
The course officially finishes at 17.00, so don't expect to 
finish before then.  If you need to leave before 17.00 
you are free to do so, but don’t expect us to have 
covered all today's material by then.  How quickly we 
get through the material varies depending on the 
composition of the class, so whilst we may finish early 
you should not assume that we will.  If you do have to 
leave early, please leave quietly.

If, and only if, you will not be attending the next day 
of the course then please make sure that you fill in 
the Course Review form online, accessible under 
“feedback” on the main MCS Linux menu, or via:
           http://feedback.training.cam.ac.uk/uis/

  

Version: Lent 2020 4

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 4

What we don’t cover
• Different types of shell:

§ We are using the Bourne-Again SHell 
(bash).

• Differences between versions of bash
• Very advanced shell scripting – try 

one of these courses instead:
§ “Python 3: Introduction for Absolute Beginners”
§ “Python 3: Introduction for Those with

Programming Experience”

bash is the most common shell on modern Unix/Linux systems – in 
fact, on most modern Linux distributions it will be the default shell (the 
shell users get if they don’t specify a different one).  Its home page on 
the WWW is at:

https://www.gnu.org/software/bash/

We will be using bash 4.4 in this course, but everything we do should 
work in bash 2.05 and later.  Version 4, version 3 and version 2.05 (or 
2.05a or 2.05b) are the versions of bash in most widespread use at 
present.  Most recent Linux distributions will have one of these 
versions of bash as one of their standard packages.  The latest 
version of bash (at the time of writing) is bash 5.0, which was 
released in January 2019.

For details of the “Python 3: Introduction for Absolute Beginners” 
course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-python
For details of the “Python 3: Introduction for Those with Programming 
Experience” course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-python4progs



  

Version: Lent 2020 5

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 5

Outline of Course
1. Recap of day one
2. Shell functions

SHORT BREAK
3. Command substitution
4. The mktemp command

VERY SHORT BREAK
5. Handling data from standard input

§ Reading values from standard input
§ Pipelines
§ Loop constructs: while

SHORT BREAK
6. More while loops:

§ Shell arithmetic
§ Tests

Exercise

The course officially finishes at 17.00, but the 
intention is that the lectured part of the course will 
be finished by about 16.30 or soon after, and the 
remaining time is for you to attempt an exercise 
that will be provided.  If you need to leave before 
17.00 (or even before 16.30), please do so, but 
don’t expect the course to have finished before 
then.  If you do have to leave early, please leave 
quietly.

If, and only if, you will not be attending the next 
day of the course then please make sure that you 
fill in the Course Review form online, accessible 
under “feedback” on the main MCS Linux menu, or 
via:
           http://feedback.training.cam.ac.uk/uis/

  

Version: Lent 2020 6

As this is a shell scripting course, we are going to need to 
interact with the Unix shell.
To start a shell, click on “Activities” in the top-left corner of 
the screen, then click on the “Terminal” icon in the 
desktop application bar.
A Terminal window will then appear.



  

Version: Lent 2020 7

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 7

Recap: Day One
• Simple shell scripts: linear lists of 

commands
• Simple use of shell variables and 

parameters
• Simple command line processing
• Output redirection
• for loops

  

Version: Lent 2020 8

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 8

Recap: What is a shell script?

• Text file containing commands 
understood by the shell

• Very first line is special:
#!/bin/bash

• File has its executable bit set
chmod a+x

Recall that the chmod command changes the permissions on 
a file.  chmod a+x sets the executable bit on a file for all 
users on the system, i.e. it grants everyone permission to 
execute the file.  (Note though, that all files in your home 
directory on the MCS Linux systems used in this course 
automatically have their executable bit set, so during this 
course you don’t need to explicitly use the chmod command 
on such files.)  Unix file permissions were covered in the 
“Unix: Introduction to the Command Line Interface” course, 
see:

https://www.training.cam.ac.uk/ucs/course/ucs-unixintro1

The notes from this course are available on-line at:
https://help.uis.cam.ac.uk/help-support/training/ 
downloads/course-files/programming-student-files/unix-cli



  

Version: Lent 2020 9

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 9

Recap: Very simple shell scripts

• Linear lists of commands

• Just the commands you’d type 
interactively put into a file

• Simplest shell scripts you’ll write

  

Version: Lent 2020 10

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 10

Shell variables and parameters
Shell variables hold data, much like variables in a 

program:
$ var="My variable"
$ echo "${var}"
My variable

Shell parameters are special variables set by the 
shell:
§ Positional parameter 0 holds the name of the shell script
§ Positional parameter 1 holds the first argument passed to the 

script; positional parameter 2 holds the second argument passed 
to the script, etc

§ Special parameter @ expands to values of all positional 
parameters (starting from 1)

§ Special parameter # expands to the number of positional 
parameters (not including 0)

We create shell variables by simply assigning them a value (as above for the shell variable VAR).  We can 
access a the value of a shell variable using the construct $VARIABLE where VARIABLE is the name of the shell 
variable.  Note that there are no spaces between the name of the variable, the equal sign (=) and the variable’s 
value in double quotes.  This is very important as whitespace (spaces, tabs, etc) is significant in the names and 
values of shell variables.
Also note that although we can assign the value of one shell variable to another shell variable, e.g. VAR1=$
{VAR}, the two shell variables are in fact completely separate from each other, i.e. each shell variable can be 
changed independently of the other.  Changing the value of one will not affect the other.  So VAR1 (in this 
example) is not a “pointer” to or an “alias” for VAR.

Shell parameters are special variables set by the shell.  Many of them cannot be modified, or cannot be directly 
modified, by the user or by a shell script.  Amongst the most important parameters are the positional parameters 
and the other shell parameters associated with them.
The positional parameters are set to the arguments that were given to the shell script when it was started, with 
the exception of positional parameter 0, which is set to the name of the shell script.  So, if myscript is a shell 
script, and I ran it by typing:

./myscript argon hydrogen mercury
then positional parameter 0 = ./myscript

1 = argon
2 = hydrogen
3 = mercury

and all the other positional parameters are not set.
The special parameter @ is set to the value of all the positional parameters, starting from the first parameter, 
passed to the shell script, each value being separated from the previous one by a space.  You access the value 
of this parameter using the construct ${@}.  If you access it in double quotes – as in "${@}" – then the shell 
will treat each of the positional parameters as a separate word (which is what you normally want).
The special parameter # is set to the number of positional parameters not counting positional parameter 0.  
Thus it is set to the number of arguments passed to the shell script, i.e. the number of arguments on the 
command line when the shell script was run.



  

Version: Lent 2020 11

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 11

Shell parameters
§ Positional parameters ($0, $1, etc)
§ Value of all arguments passed: $@
§ Number of arguments: $#
$ cd
$ examples/params 0.5 62 38 hydrogen
This script is /home/y250/examples/params

There are 4 command line arguments.

The first command line argument is: 0.5
The second command line argument is: 62
The third command line argument is: 38

Command line passed to this script: 0.5 62 38 hydrogen

In the examples subdirectory of your home directory there is a 
script called params.  If you run this script with some command 
line arguments it will illustrate how the positional parameters and 
related shell parameters work.  Note that even if you type exactly 
the command line on the slide above your output will probably be 
different as the script will be in a different place for each user.

The positional parameter 0 is the name of the shell script (it is the 
name of the command that was given to execute the shell script).

The positional parameter 1 contains the first argument passed to 
the shell script, the positional parameter 2 contains the second 
argument passed and so on.

The special parameter # contains the number of arguments that 
have been passed to the shell script.  The special parameter @ 
contains all the arguments that have been passed to the shell 
script.

  

Version: Lent 2020 12

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 12

for
Execute some commands once for each value in a 

collection of values
for VARIABLE in <collection of values> ; do
  <some commands>
done

Examples:
colours="red green blue"
for colour in $colours ; do
  echo "$colour"
done

for file in * ; do
  ls -l "$file"
done

We can repeat a set of commands using a for loop.  A for loop repeats a set of 
commands once for each value in a collection of values it has been given.  We use a 
for loop like this:

for VARIABLE in <collection of values> ; do
<some commands>

done
where <collection of values> is a set of one or more values (strings of 
characters).  Each time the for loop is executed the shell variable VARIABLE is set to 
the next value in <collection of values>.  The two most common ways of 
specifying this set of values is by putting them in a another shell variable and then using 
the ${} construct to get its value (note that this should not be in quotation marks), or by 
using a wildcard or file name glob (e.g. *) to specify a collection of file names (pathname 
expansion).  <some commands> is a list of one or more commands to be executed.

Note that you can put the do on a separate line, in which case you can omit the semi-
colon (;):

for VARIABLE in <collection of values>
do

<some commands>
done

There are some examples of how to use it in the for1 and for2 scripts in the 
examples directory of your home directory.  Note that a for loop can contain another 
for loop (the technical term for this is nesting).



  

Version: Lent 2020 13

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 13

Recap: What are we trying to do?

Scientific computing

i.e. shell scripts that do
some useful scientific
work, e.g. repeatedly
running a simulation
or analysis with different data

Recall the name of this course (“Simple Shell Scripting for Scientists”) 
and its purpose: to teach you, the scientist, how to write shell scripts that 
will be useful for your scientific work.

As mentioned on the previous day of the course, one of the most 
common (and best) uses of shell scripts is for automating repetitive 
tasks.  Apart from the sheer tediousness of typing the same commands 
over and over again, this is exactly the sort of thing that human beings 
aren’t very good at: the very fact that the task is repetitive increases the 
likelihood we’ll make a mistake (and not even notice at the time).  So it’s 
much better to write (once) – and test – a shell script to do it for us.  
Doing it via a shell script also makes it easy to reproduce and record 
what we’ve done, two very important aspects of any scientific endeavour.

So, the aim of this course is to equip you with the knowledge and skill 
you need to write shell scripts that will let you run some program (e.g. a 
simulation or data analysis program) over and over again with different 
input data and organise the output sensibly.

  

Version: Lent 2020 14

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 14

Sample program: zombie (1)
$ ./zombie 0.005 0.0175 0.01 0.01 500
When Zombies Attack!: Basic Model of outbreak of zombie infection

Population size:        5.0000e+05
Model run time:         1.0e+01 days

Zombie destruction rate (alpha):        5.000000e-03
Zombie infection rate (beta):           1.750000e-02
Zombie resurrection rate (zeta):        1.000000e-02
Natural death [and birth] rate (delta): 1.000000e-02

Output file:            zombie.dat

Model took 7.457018e-02 seconds

The zombie program is in your home directory.  It is a program written 
specially for this course, but we’ll be using it as an example program for 
pretty general tasks you might want to do with many different programs.  
Think of zombie as just some program that takes some input on the 
command line and then produces some output (on the screen, or in one or 
more files, or both), e.g. a scientific simulation or data analysis program.

The zombie program takes 5 numeric arguments on the command line: 4 
positive floating-point numbers and 1 positive integer.  It always writes its 
output to a file called zombie.dat in the current working directory, and 
also writes some informational messages to the screen.

The zombie program is not as well behaved as we might like (which, 
sadly, is also typical of many programs you will run).  The particular way 
that zombie is not well behaved is this: every time it runs it creates a file 
called running-zombie in the current directory, and it will not run if this 
file is already there (because it thinks that means it is already running).  
Unfortunately, it doesn’t remove this file when it has finished running, so 
we have to do it manually if we want to run it multiple times in the same 
directory.



  

Version: Lent 2020 15

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 15

Sample program: zombie (2)
Simulation of an outbreak of a zombie 
infection in a closed population

blue = Humans
red = Zombies

Photo: Melbourne Zombie Shuffle by  Andrew Braithwaite
Licensed under CC BY 2.0
http://www.flickr.com/photos/bratha/2578784637/

The zombie program uses a variant of the SIR model from epidemiology 
to simulate an outbreak of a zombie infection in a closed (i.e. no one 
enters or leaves) population.  Obviously, since zombies don’t actually 
exist, it would be a mistake to try and take this program too seriously.  You 
should think of zombie as just a program that takes some input on the 
command line and then produces some output on the screen and in a file, 
and whose output can then be fed to yet other programs for further 
processing (as we’ll see later this afternoon).

However, as it happens, the program is based on actual academic 
modelling of the spread of disease, as found in Chapter 4 (pp. 133-150) of 
Infectious Disease Modelling Research Progress (2009), which is entitled 
“When Zombies Attack!: Mathematical Modelling of an Outbreak of Zombie 
Infection”, and which you can find here:

http://mysite.science.uottawa.ca/rsmith43/zombies.pdf

And in case you are interested in the book from which that chapter is 
taken, the ISBN of Disease Modelling Research Progress is 978-1-60741-
347-9, it’s edited by J. M. Tchuenche & C. Chiyaka and published by Nova 
Science Publishers, Inc.

Note that the zombie program writes its output to a file of numbers rather 
than producing graphical output.  At the end of this afternoon we will see 
how to produce graphs of its output.

  

Version: Lent 2020 16

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 16

This page intentionally left blank
Deze bladzijde werd met opzet blanco gelaten.

このページは計画的にブランクを残ている

Ta strona jest celowo pusta.

Esta página ha sido expresamente dejada en blanco.

Эта страница нарочно оставлена пустой.

Denne side med vilje efterladt tom.

Ĉi tiu paĝo restas intence vaka.

این صفحھ خالي است

An leathanach seo fágtha folamh in aon turas.

This page intentionally left blank: nothing to see here.



  

Version: Lent 2020 17

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 17

Exercise from Day One

We have a directory that contains the output 
of several runs of the zombie program in 
separate files.  We have a file of commands 
that will turn the output into a graph (using 
gnuplot).  We want to write a shell script 
that turns the output from each run into a 
graph.

We are specifically using the gnuplot program and the output of the 
zombie program we met on the previous day of the course.  
(gnuplot is a program that creates graphs, histograms, etc from 
numeric data.) Think of this task as basically: I have some data sets 
and I want to process them all in the same way.  My processing might 
produce graphical output, as here, or it might produce more data in 
some other format.

If you haven’t met gnuplot before, you may wish to look at its WWW 
page:

http://www.gnuplot.info/

If you think you might want to use the gnuplot program for creating 
your own graphs, then you may find the “Introduction to Gnuplot” 
course of interest – the course notes are on-line at:

https://www-uxsup.csx.cam.ac.uk/courses/moved.Gnuplot/

  

Version: Lent 2020 18

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 18

Output of gnuplot

If you want to get an idea of what we’re trying to do, you can try 
the following:
$ cd
$ scripts/multi-run 500
$ cp gnuplot/zombie.gplt .
$ cp zombie-500.dat zombie.dat
$ ls zombie.png
/bin/ls: zombie.png: No such file or directory
$ gnuplot zombie.gplt
$ rm zombie.dat
$ ls zombie.png
zombie.png
$ eog zombie.png &

Note that the output of “ls zombie.png” may look slightly different – in 
particular, the colours may be slightly different shades (assuming you are 
reading these notes in colour).



  

Version: Lent 2020 19

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 19

Details of exercise
What we want to do is, for each output file:

1. Rename (or copy) the output file we want to 
process to zombie.dat

$ mv zombie-500.dat zombie.dat

2. Run gnuplot with the zombie.gplt file
$ gnuplot zombie.gplt

3. Rename (or delete if you copied the original output 
file) zombie.dat

$ mv zombie.dat zombie-500.dat

4. Rename zombie.png
$ mv zombie.png zombie-500.dat.png

The exercise set at the end of the previous day of the 
course was to create a shell script that does the above task. 
 Basically, for each of the .dat files produced by the 
multi-run script, the shell script should run gnuplot on 
it to create a graph (which will be stored as a .png file).  
The zombie.gplt file provided will only work if the .dat 
file is called zombie.dat and is in the current directory.  
Also, gnuplot should not be allowed to overwrite 
each .png file, so the shell script must rename each .png 
file after gnuplot has created it.

  

Version: Lent 2020 20

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 20

multi-gnuplot1
File: gnuplot/multi-gnuplot1
#!/bin/bash

# Run gnuplot program once for each output file
for data_file in zombie-*.dat ; do

  # Rename output file to zombie.dat
  mv "$data_file" zombie.dat

  # Run gnuplot
  gnuplot zombie.gplt

  # Rename zombie.dat to original name
  mv zombie.dat "$data_file"

  # Rename zombie.png
  mv zombie.png "$data_file.png"
done

So here’s one solution to that exercise.  This file        
(multi-gnuplot1) is in the gnuplot directory.

It takes each file whose name is of the form              
zombie-<something>.dat (where the <something> can 
be any set of characters that can appear in a filename) in 
turn and renames it to zombie.dat, runs gnuplot, then 
renames the file back to its original name, and renames the 
zombie.png file to zombie-<something>.dat.png.



  

Version: Lent 2020 21

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 21

multi-gnuplot2
File: gnuplot/multi-gnuplot2
#!/bin/bash

# Run gnuplot program once for each output file
for data_file in zombie-*.dat; do
  # Copy output file to zombie.dat
  cp -f "$data_file" zombie.dat

  # Run gnuplot
  gnuplot zombie.gplt

  # Delete zombie.dat file
  rm -f zombie.dat

  # Rename zombie.png
  mv zombie.png "$data_file.png"
done

…and here’s another solution.  This file (multi-gnuplot2) is in the 
gnuplot directory.

It takes each file whose name is of the form zombie-<something>.dat 
(where the <something> can be any set of characters that can appear in a 
filename) in turn and copies it to zombie.dat, runs gnuplot, then deletes 
the copy, and renames the zombie.png file to                                    
zombie-<something>.dat.png.

These two shell scripts are functionally equivalent – you can use whichever 
you like and the results will be identical.

Note that one purely cosmetic difference between them is that one has the do 
keyword on the same line as the for keyword (with a semi-colon (;) before 
the do) whilst the other has the do keyword on a separate line (and no semi-
colon).  Some people feel that it makes scripts more readable to put the do on 
a separate line.
However, whether you put the do on the same line as the for (and use the 
semi-colon) or put it on a different line is entirely a matter of style and 
personal preference – well, you want some outlet for your individuality, don’t 
you? ☺

  

Version: Lent 2020 22

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 22

multi-gnuplot3
File: gnuplot/multi-gnuplot3
#!/bin/bash

# Run gnuplot program once for each output file
for data_file in zombie-*.dat ; do

  # Create symbolic link called zombie.dat to output file
  ln -s -f "$data_file" zombie.dat

  # Run gnuplot
  gnuplot zombie.gplt

  # Delete zombie.dat symbolic link
  rm -f zombie.dat

  # Rename zombie.png
  mv zombie.png "${data_file}.png"
done

…and here’s yet another solution.  This file (multi-gnuplot3) is also in the 
gnuplot directory.

It takes each file whose name is of the form zombie-<something>.dat 
(where the <something> can be any set of characters that can appear in a 
filename) in turn and creates a symbolic link to it called zombie.dat, runs 
gnuplot, then deletes the symbolic link (not the original file), and renames 
the zombie.png file to zombie-<something>.dat.png.

This shell script is functionally equivalent to the previous two – you can use 
whichever you like and the results will be identical.

There is, though, one way in which this script is better than the previous two.  
Since it only creates a symbolic link to each file in turn rather than making a 
copy of the file (like multi-gnuplot2), it uses considerably less disk space 
(symbolic links take up almost no space on disk), which can be an issue if the 
files you are processing are large.  Also, since it does not rename the original 
file (like multi-gnuplot1), if it is interrupted part way through its execution 
you don’t need to worry about potentially “losing” any output files.  If multi-
gnuplot1 was interrupted after it had renamed a file to zombie.dat but 
before it had a chance to rename it back, then, unless the person running it 
realised this had happened and dealt with it, the zombie.dat file would be 
deleted next time the script was run(!).



  

Version: Lent 2020 23

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 23

Sample output: zombie-3000.dat.png

You can try out one of these scripts if you want.  First, create some output files for 
the script to process:
$ cd
$ rm –f *.dat stdout-* logfile
$ scripts/multi-run 50 100 500 1000 3000 5000 10000 50000

Now, make sure that the zombie.gplt file is in your current directory:
$ cp gnuplot/zombie.gplt .

Now run one of the scripts, either multi-gnuplot1 or multi-gnuplot2 or 
multi-gnuplot3, it doesn’t matter which:
$ gnuplot/multi-gnuplot1

Now do an ls to see what files have been created, and then try viewing some of 
them:
$ eog zombie-50000.dat.png &

Your solutions to this exercise (you did do it, didn’t you?) should have been similar 
to the ones presented here.  If they weren’t, or if you had problems with the 
exercise, please let the course giver or demonstrator know.

  

Version: Lent 2020 24

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 24

Shell functions
$ cd
$ cat hello-function
#!/bin/bash
function greet()
{
  # This is a shell function.
  echo "Hello."
  echo "I am function ${FUNCNAME}."
}

$ ./hello-function
$ 

Shell functions are similar to functions in most high-level programming languages.  
Essentially they are “mini-shell scripts” (or bits of shell scripts) that are invoked (called) 
by the main shell script to perform one or more tasks.  When called they can be passed 
arguments (parameters), as we will see later, and when they are finished they return 
control to the statement in the shell script immediately after they were called.

To define a function, you just write the following at the start of the function:
function function_name()
{
where function_name is the name of the function.  Then, after the last line of the 
function you put a line with just a closing curly brace (}) on it:
}
Note that unlike function definitions in most high level languages you don’t list what 
parameters (arguments) the function takes.  This is not so surprising when you 
remember that shell functions are like “mini-shell scripts” – you don’t explicitly define 
what arguments a shell script takes either.

Like functions in a high-level programming language, defining a shell function doesn’t 
actually make the shell script do anything – the function has to be called by another 
part of the shell script before it will actually do anything.

FUNCNAME is a special shell variable (introduced in version 2.04 of bash) that the shell 
sets within a function to the name of that function.  When not within a function, the 
variable is unset.



  

Version: Lent 2020 25

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 25

Calling a shell function
$ gedit hello-function &
#!/bin/bash
function greet()
{
  # This is a shell function.
  echo "Hello."
  echo "I am function $FUNCNAME."
}

greet

$ ./hello-function
Hello.
I am function greet.
$ 

Start your favourite editor (or gedit if you don’t have a preference) and modify 
the file hello-function in your home directory as shown above.  Make sure 
you save the file after you’ve modified it or your changes won’t take effect.

Now try running the shell script again:
$ ./hello-function
Hello.
I am function hello.
$ 

This time it actually does something – the function greet is called and does 
what we would expect.

You call a shell function by just giving its name (just as you would with any of 
the standard Unix commands (or shell builtin commands) that we’ve met).  Note 
that you don’t put brackets after the name of the function when you call it.  You 
only do that when you first define the function.  That’s one of the ways that the 
shell figures out that you are trying to define a shell function.

  

Version: Lent 2020 26

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 26

Shell function arguments (1)
$ gedit hello-function &
#!/bin/bash
function greet()
{
  # This is a shell function.
  echo "Hello, $1"
  echo "I am function $FUNCNAME."
}

greet

$ ./hello-function Dave
Hello, 
I am function greet.
$ 

Modify the file hello-function in your home directory as shown 
above.  Make sure you save the file after you’ve modified it or your 
changes won’t take effect.

Recall that the positional parameter 1 (whose value is accessed 
using the construct ${1}) contains the value of the first argument 
passed to the shell script (or is unset if no arguments are passed).  
So what would we expect the above shell script to do?  Surely, it will 
print out “Hello, <whatever argument we gave it>”?
(For the pedants amongst you: <whatever argument we gave it> 
means whatever argument we passed the shell script on the 
command line when we invoked it – “Dave” in the above example.)

Apparently not.  Maybe something’s wrong with out shell script?  
Maybe positional parameter 1 isn’t being set correctly?  Let’s try 
some debugging and see.



  

Version: Lent 2020 27

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 27

Shell function arguments (2)
$ gedit hello-function &
#!/bin/bash
function greet()
{
  # This is a shell function.
  echo "Hello, $1"
  echo "I am function $FUNCNAME."
}

echo "First argument: $1"
hello

$ ./hello-function Dave
First argument: Dave
Hello, 
I am function greet. 

Modify the file hello-function in your home directory as shown above.  Make 
sure you save the file after you’ve modified it or your changes won’t take effect.

This is a simple but useful debugging trick for shell scripts.  When something isn’t 
working right, make the shell script print out the values of all the shell variables, 
environment variables or shell parameters that you are interested in just before the 
point where you think it is going wrong.

In this case, what this shows us is that positional parameter 1 is being set correctly.  
So that’s not the problem.

The problem is that within a function the positional parameters (from 1 onward, 0 
doesn’t change) are set to the arguments that the function was given when it was 
called.  (Similarly, within a function the special parameters @ and # are set to all the 
arguments passed to the function, and the number of arguments passed to the 
function, respectively.)  Since we called the function hello without any arguments, 
while the function greet is executing positional parameter 1 is unset, and so when 
we try to print its value, nothing is printed.
The way you call a shell function with arguments is to list those arguments 
immediately after the name of the shell function, e.g. in our script:

hello Dave
would call the function greet with one argument: “Dave”.

  

Version: Lent 2020 28

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 28

Shell function arguments (3)
$ gedit hello-function &
#!/bin/bash
function greet()
{
  # This is a shell function.
  echo "Hello, $1"
  echo "I am function $FUNCNAME."
}

echo "First argument: $1"
greet Hal

$ ./hello-function Dave
First argument: Dave
Hello, Hal
I am function greet. 

Modify the file hello-function in your home directory 
as shown above.  Make sure you save the file after you’ve 
modified it or your changes won’t take effect.

So, if we call our function with an argument (in this case 
the argument is “Hal”), then the value of the positional 
parameter 1 is indeed set to that argument within the 
function.

So, if we want to our function to have the same first 
argument as the shell script itself, then we need to call the 
function with the first argument with which the shell script 
was invoked.

You can probably guess how we do this…



  

Version: Lent 2020 29

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 29

Shell function arguments (4)
$ gedit hello-function &
#!/bin/bash
function greet()
{
  # This is a shell function.
  echo "Hello, $1"
  echo "I am function $FUNCNAME."
}

#echo "First argument: $1"
greet "$1"

$ ./hello-function Dave
Hello, Dave
I am function greet.

Modify the file hello-function in your home directory as 
shown above.  Make sure you save the file after you’ve modified 
it or your changes won’t take effect.

Note that now we think we’ve cracked it, we can get rid of our 
debugging effort.  We could delete that line, but, if we were 
wrong, we’d only have to put it back in again as we tried to figure 
it out.  So it is easier to just comment it out by inserting a hash 
character (#) at the start of the line – recall that the shell treats 
everything after a hash at the start of a line as a comment.

But as you probably guessed – it does indeed work the way we 
want.  Positional parameter 1 holds the first argument that was 
given on the command line to the shell script, so if we want to 
pass that argument to the greet function, we just put:

greet "${1}"
in our shell script, and voilà!

  

Version: Lent 2020 30

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 30

Why use shell functions?
• Allow us to structure our shell script:

§ Functions ó sub-tasks
• Easier to write small parts of the shell script at a 

time:
§ So we can write the easy bits first!

• Easier to test individual parts of the shell script
• Repetitive sequences of commands only appear in 

one place:
§ Less typing!  Fewer typos!
§ Easy to make changes
§ Easy to fix errors

• Can re-use functions in different shell scripts

If you’re familiar with computer programming, you’ll 
probably have already come across the concept of 
functions in whatever programming languages you are 
familiar with.  The advantages of using shell functions 
are basically the same as the advantages of using 
functions in a programming language, as you can 
probably tell from the slide above.



  

Version: Lent 2020 31

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 31

Script as a series of functions
function start()
{

…
}
function do_something()
{

…
}
function end()
{

…
}
function main()
{

…
}

main "${@}"

If you’ve implemented your shell script entirely as shell 
functions, there is a really nice trick you can use when 
something goes wrong and you need to debug your script, or if 
you want to re-use some of those functions in another script.  
As you’ve implemented the script entirely as a series of 
functions, you have to call one of those functions to start the 
script actually doing anything.  For the purposes of this 
discussion, let’s call that function main.  So your script looks 
something like that shown on the slide above.  (You can see 
an example of a script like this in the examples directory in 
the file function-script.)

By commenting out the call to the main function, you now 
have a shell script that does nothing except define some 
functions.  You can now easily call the function(s) you want to 
debug/use from another shell script using the source shell 
builtin command (as we’ll see on the optional final day of this 
course).  This makes debugging much easier than it otherwise 
might be, even of really long and complex scripts.

  

Version: Lent 2020 32

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 32

Improving multi-run
• Depends on run-once
• Location of run-once hard-coded into script:

§ If we move run-once, script breaks until it is 
updated

File: scripts/multi-run 

#!/bin/bash

# Parameters that stay the same each run
fixed_parameters="0.005 0.0175 0.01 0.01"

# Run zombie program once for each argument
#  Note: *no* quotes around $fixed_parameters
#        or they'll be interpreted as one argument!
for population in "$@" ; do
  "$HOME/scripts/run-once" $fixed_parameters "$population"
done

On the previous day of this course we met the scripts multi-run and run-
once.  Together, these scripts gave us a nice way of running a program 
several times with different parameter sets.  However, they are not as 
versatile as we might hope.  run-once requires that the program it runs 
(zombie) be in the current directory.  Since, in this example, zombie is a 
special program for us (imagine it were your program that you had written 
from scratch), that’s not such a bad limitation, since we quite probably would 
have a working copy of the program in the directory where we were going to 
store its output.

multi-run, on the other hand, depends on the run-once script, and has 
the location of that script hard-coded into it.  If we move the       run-once 
script for some reason, then multi-run will immediately stop working.  
Wouldn’t it be nice if we could somehow avoid this problem, but still keep 
the functionality of the two scripts somewhat separate?

One of way of doing exactly that would be to incorporate run-once into 
multi-run as a shell function.  That should be quite easy.  We define a 
function in multi-run that does exactly the same thing as the        run-
once script, and in our for loop, instead of calling the             run-once 
script, we call our function.

So, let’s do that and see what happens.



  

Version: Lent 2020 33

The multi-run and run-once shell scripts are in the scripts directory of your 
home directory.  
Your task is to get the functionality of the run-once script into the multi-run 
script as a shell function.  (Hint: it's essentially a cut-and-paste exercise)
Above I’ve given you the skeleton of what the modified script should look like.  You 
should be able to fill in the rest.

You can check that you’ve done it correctly by trying to run your modified multi-
run script (remember to save it after you’ve made your modifications!):
$ cd
$ rm –f *.dat stdout-* logfile
$ ls
$ scripts/multi-run 50 100 500 1000 3000 5000 10000 50000
$ ls

This should be a quick exercise, so when you finish it, take a short break and then 
we’ll start again with the solution.

  

Version: Lent 2020 34

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 34

Recap: Shell functions
• “mini-shell scripts”

• Usually used for well-defined tasks (often 
called repeatedly)

• Specify arguments by listing them after 
function name when calling function
hello Dave

• Positional parameters (and related special 
shell parameters) set to function’s arguments 
within function
In function hello, positional parameter 1 = Dave

One thing worth noticing from the exercise we’ve just done:

The original script had the line:
"${HOME}/scripts/run-once" ${fixed_parameters} "${population}"

The new script has the line:
run_program ${fixed_parameters} "${population}"

Note that arguments that we are passing have not changed in the 
slightest.  In the original script we were calling another shell script with 
some arguments.  In our new script we are calling a shell function with 
the same arguments.  The syntax for these is almost identical: the main 
change is the name (and location) of the things being called.  See?, I told 
you shell functions were like “mini-shell scripts”. ☺



  

Version: Lent 2020 35

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 35

Testing
File: scripts/multi-run

#!/bin/bash

function run_program()
{
# This function runs the zombie program

…
}

# Parameters that stay the same each run
fixed_parameters="0.005 0.0175 0.01 0.01"

run_program $fixed_parameters 80

# Run zombie program once for each argument
#  Note: *no* quotes around $fixed_parameters
#        or they'll be interpreted as one argument!
#for population in "$@" ; do
# run_program $fixed_parameters "$population"
#done

One of the advantages of writing a shell script using shell functions should be immediately 
apparent.  The main body of this shell script – the for loop – is nice and simple.  It just calls a 
function over and over varying one parameter each time.  Because we’ve hidden the commands 
that do the real work in a shell function, we can see this immediately just by looking at the script.

If we’d put all the lines in the run_program function in the for loop it would have obscured the 
script’s structure, and we might have spent a lot of time trying to figure out what the individual 
lines of script did before realising what was going on.  It also helps that we’ve chosen a 
meaningful name for our shell function.  So just by looking at the script we can immediately say 
“Aha!  This script probably runs a program (run_program) several times, varying one of its 
parameters each time.”  (Of course, at this point we’d be taking it on faith that the author of the 
shell script wasn’t an evil troll who deliberately chose misleading names for his shell functions.  
Fortunately, most of those spend the majority of their time under bridges harassing goats.)

Another advantage is that we can easily test our shell function by just commenting the other 
complicating bits of the shell script out (as above) and just running the function once with some 
test arguments.  This is worth doing every time you’ve written a new function (especially if it is 
complicated) so that you know it behaves the way you expected it to.  It also means that you 
know that, if there is an error, it is not in that part of the shell script (that shell function).  That 
makes it much easier to track down errors.

You can save the above modifications and try out the script if you want: it should just run the 
run_program function once, producing two output files (zombie-80.dat and stdout-80) 
and writing some information about what it is doing to the log file logfile.

If you do try it out, make sure that you undo those modifications and return the shell script to its 
former state (and save it) as we will be using the shell script later.

  

Version: Lent 2020 36

Command substitution is the process whereby the shell runs a command and substitutes 
the command’s output for wherever the command originally appeared (in a shell script or 
on the command line).

So, for example, the following line in a shell script:
starting_directory="$(pwd)"
would set the shell variable starting_directory to the full path of the current working 
directory.  (We don’t have to surround the $(pwd) in quotes, but it is a good idea: the 
path may contain spaces.)  This is how it works:
1. The shell runs the pwd command.  The pwd command prints out the full path of the 

current working directory, i.e. its output is the full path of the current working directory.  
Let’s suppose we were in /tmp, so the output of the pwd command would be “/tmp”.

2. The shell takes this output (“/tmp”) and substitutes it for where the original expression 
$(pwd) appeared.  So what we now have is:

starting_directory="/tmp"
3. As you probably know by now, this is just the normal way of assigning a value to a 

shell variable, and, sure enough, that’s exactly what the shell does: it assigns the 
value “/tmp” to the shell variable starting_directory.

Instead of the $() construct you can also use backquotes, i.e. you can use `command` 
instead of $(command), and you are likely to come across these in many shell scripts.  
However, the use of backquotes is generally a very bad idea for two reasons: (1) it’s very 
easy to misplace or overlook a backquote (with catastrophic results) as the backquote 
character (`) is so small, and (2) it’s very difficult to use backquotes to do nested 
command substitution (one command substitution inside another one).

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 36

Command substitution
Sometimes we want to get the output of a command 

and use it in our shell script, for instance, we might 
want a shell variable to hold the output of a 
command.  How do we do this?:

$( command )

$ cd /tmp
$ dir="$(pwd)"
$ echo "I will use directory: $dir"
I will use directory: /tmp



  

Version: Lent 2020 37

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 37

Improving multi-run (2)
File: scripts/multi-run
#!/bin/bash

# Program to run: zombie
program="$(pwd)/zombie"

# Set up environment variables for program
export ZOMBIE_FORMAT="NORMAL"

# Parameters that stay the same each run
fixed_parameters="0.005 0.0175 0.01 0.01"

function run_program()
{

…
  # Run program with passed arguments
  "$program" "$@" > "stdout-${5}"

…
}

Let’s make a small, but major, improvement to the multi-run script (this script is in the scripts directory of your home 
directory).  Change the lines:

# Run zombie with passed arguments
ZOMBIE_FORMAT="NORMAL" ./zombie "${@}" > "stdout-${5}"
to:
# Run program with passed arguments
"${program}" "${@}" > "stdout-${5}"

And add the lines:
# Program to run: zombie
program="$(pwd)/zombie"

# Set up environment variables for program
export ZOMBIE_FORMAT="NORMAL"
immediately before the line:
# Parameters that stay the same each run

Why is this such a major improvement?
Firstly, by replacing the hard-coded ./zombie with a shell variable, we have made it much easier to modify the script to use 
other programs instead of zombie.  (Not to mention making it much more obvious where we make such a modification.  And by 
explicitly setting the ZOMBIE_FORMAT environment variable in an adjacent part of the script we have also made it more obvious 
where any environment variables the program uses should be changed, should we need to do so.)
Secondly, by obtaining the full path of the zombie program our shell script can now work in another directory than the one we 
start off in, as we now have a full path to the zombie program and so can run it from whatever directory we may be in.  We’ll 
see why this is a good idea in a minute.

You should check that this modified multi-run script  still works – remember to save it after you’ve made your modifications – 
with the same sequence of commands given for this purpose on the page 33 of your notes.

  

Version: Lent 2020 38

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 38

The mktemp command
Safely makes temporary files or directories for 

you

Options:
-d make a directory instead of a file
-t make file or directory in a temporary 

directory (usually /tmp)

$ mktemp -d -t zombie.XXXXXXXXXX
/tmp/zombie.khhcE30735

The mktemp command is an extremely useful command that allows users to 
safely create temporary files or directories on multi-user systems.  It is very 
easy to unsafely create a temporary file or directory to work with from a shell 
script, and, indeed, if your shell script tries to create its own temporary files or 
directories using the normal Unix commands then it is almost certainly doing 
so unsafely.  Use the mktemp command instead.

Note that if you try the example above you will almost certainly get a directory 
with a different name created for you.

Note also that mktemp has more options than the two listed above, but we 
won’t be using them in this course.  

How do you use mktemp?  You give it a “template” which consists of a name 
with some number of X’s appended to it (note that is an UPPER CASE letter 
X), e.g. zombie.XXXXX.  mktemp then replaces the X’s with random letters 
and numbers to make the name unique and creates the requested file or 
directory.  It outputs the name of the file or directory it has created.



  

Version: Lent 2020 39

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 39

Improving multi-run (3a)
File: scripts/multi-run
#!/bin/bash
set -e

…
# My current directory
starting_directory="$(pwd)"
# Temporary directory for me to work in
temp_directory="$(mktemp -t -d zombie.XXXXXXXXX)"

# Change to temporary directory
cd "$temporary_directory"
# Run program once for each argument
#  Note: *no* quotes around $fixed_parameters
#        or they'll be interpreted as one argument!
for population in "$@" ; do
  run_program $fixed_parameters "$population"
done

# Copy files back to my directory
cp -f -p -R . "$starting_directory"
# Go back to my directory
cd "$starting_directory"
# Clean up
rm -R -f "$temp_directory"

Modify the multi-run script in the scripts directory as shown above.

The improvement we’ve made here is to now do all our calculations in a temporary directory, and only 
copy the output files (and log file) back to our working directory when we’ve finished.
(You should understand what all the lines of shell script we’ve just added are doing – if you don’t 
please ask the course giver or demonstrator to explain.)
Why is this an improvement?  Well, if, as in this course, the directory we are working from (our home 
directory) is actually on a network filesystem, then this can have a major impact on performance, 
particularly when the network is busy (like when a whole classroom is doing this course).  By working 
in /tmp, which is usually a local filesystem (as it is for MCS Linux machines) we no longer have to 
deal with the network overheads and bottlenecks except right at the very end of the process.  This 
should make things much quicker.  It also potentially makes things more reliable as well, as it 
minimises the opportunity for network problems to mess up our work.  (Hurrah!)

One other important thing to note is that we’ve told our script to abort as soon as it hits an error.  
That’s what adding the “set -e” line immediately after “#!/bin/bash” at the start of the file does 
(you did remember to make that modification, right?).  (We can also get the same effect by starting the 
bash shell with the -e option, for instance by changing the “#!/bin/bash” line at the start of the file 
to “#!/bin/bash -e” although it is better to use “set -e”.)

Why do this now?  The reason is that our shell script is now doing something dangerous: it is 
changing the working directory.  Why is that dangerous?  Well, imagine I tried to change to a 
directory and failed for some reason.  Thinking I’m in a different directory than I actually am, I promptly 
delete everything in it.  Oops!

We have one more change to make (see the next slide) and then you can check that you’ve modified 
your script correctly by trying to run your modified multi-run script (remember to save it after you’ve 
made your modifications!).

  

Version: Lent 2020 40

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 40

Improving multi-run (3b)
File: scripts/multi-run
#!/bin/bash
set -e

# My current directory
starting_directory="$(pwd)"
# Location of log file
log_file="$starting_directory/logfile"

function run_program()
{

…
  # Write to logfile
  echo "" >> "$log_file"
  date >> "$log_file"
  echo "Running $program with $@" >> "$log_file"

…
  # Write to logfile
  echo "Output file: zombie-$5.dat" >> "$log_file"
  echo "Standard output: stdout-$5" >> "$log_file"

…

Now modify the multi-run script in the scripts directory as shown 
above.

We’ve made two improvements here.  The first is to use a shell variable to 
hold the location of our log file (so we only have to change its location in 
one place in the future).  The second (and more important) is to make our 
script write to the end of the existing logfile in the current directory 
when we run the script rather than overwriting logfile each time we run 
the script.  Since the log file is supposed to contain a record of all the runs 
of the script that we do for posterity (and debugging), we normally wouldn’t 
want it to be replaced with a new log file each time we run the script.
(You should understand what all the lines of shell script we’ve just added are 
doing – if you don’t please ask the course giver or demonstrator to explain.)

You can check that you’ve done it correctly by trying to run your modified 
multi-run script (remember to save it after you’ve made your 
modifications!):
$ cd
$ rm –f *.dat stdout-*
$ ls
$ scripts/multi-run 50 100 500 1000 3000 5000 10000 50000
$ ls



  

Version: Lent 2020 41

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 41

Improving multi-run (3b)
File: scripts/multi-run
#!/bin/bash
set -e

# My current directory
starting_directory="$(pwd)"
# Location of log file
log_file="$starting_directory/logfile"

function run_program()

…
  # Write to logfile
  echo "" >> "$log_file"
  date >> "$log_file"
  echo "Running $program with $@" >> "$log_file"

…
  # Write to logfile
  echo "Output file: zombie-$5.dat" >> "$log_file"
  echo "Standard output: stdout-$5" >> "$log_file"

…

Now modify the multi-run script in the scripts directory as shown 
above.

We’ve made two improvements here.  The first is to use a shell variable to 
hold the location of our log file (so we only have to change its location in 
one place in the future).  The second (and more important) is to make our 
script write to the end of the existing logfile in the current directory 
when we run the script rather than overwriting logfile each time we run 
the script.  Since the log file is supposed to contain a record of all the runs 
of the script that we do for posterity (and debugging), we normally wouldn’t 
want it to be replaced with a new log file each time we run the script.
(You should understand what all the lines of shell script we’ve just added are 
doing – if you don’t please ask the course giver or demonstrator to explain.)

You can check that you’ve done it correctly by trying to run your modified 
multi-run script (remember to save it after you’ve made your 
modifications!):
$ cd
$ rm –f *.dat stdout-*
$ ls
$ scripts/multi-run 50 100 500 1000 3000 5000 10000 50000
$ ls

  

Version: Lent 2020 42

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 42

Second Exercise

Make the changes to multi-run indicated on 
the previous slides (37, 39 & 40) and 
then try the improved script.

Then take a short break.  We’ll start again 
in 8 minutes or thereabouts.

8 minutes

The multi-run shell script is in the scripts directory of your 
home directory.  Make the modifications indicated on the 
previous slides (37, 39 & 40), if you haven’t already.

Now check that you’ve done it correctly by trying to run your 
modified multi-run script (remember to save it after you’ve 
made your modifications!):
$ cd
$ rm –f *.dat stdout-*
$ ls
$ scripts/multi-run 50 100 500 1000 3000 5000 10000 50000
$ ls

And when you finish doing this, please do take a quick break 
before we continue.  (And that’s “break” as in “break from the 
computer” not “break to check my e-mail”.)



  

Version: Lent 2020 43

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 43

read
Get input from standard input…

…try to put each word (value) in as many 
separate variables as are provided…

read var1 var2 var3
Options:
-p Use the following string as a prompt for the 

user
$ read -p "What is the answer?: " answer
What is the answer?: 42
$ echo "$answer"
42

The read shell builtin command takes input from standard input (usually the 
keyboard) and returns it in the specified shell variable.  If you don’t specify a 
shell variable, it will return it in a shell variable called REPLY.

The -p option gives read a string that it displays as a prompt for the user.

You can give read more than one shell variable in which to return its input.  
What happens then is that the first word it reads goes into the first shell variable, 
the second word into the second shell variable and so on.
If there are more words than shell variables, the extra words all are put into the 
last shell variable.
If there are more shell variables than words, each of the extra variables are set 
to the empty string.

As far as read is concerned a “word” is a sequence of characters that does not 
contain a space, i.e. it considers spaces as the thing that separates one word 
from another.  (The technical term for “thing that separates one thing from 
another” is “delimiter”.)

  

Version: Lent 2020 44

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 44

Using read (1)
$ cd
$ gedit scripts/run-once-using-read &

#!/bin/bash

# Read in parameters from standard input
read -p "Input parameters for zombie: " alpha beta zeta delta population

…

$ cd
$ scripts/run-once-using-read
Input parameters for zombie: 0.5 0.1 0.1 0.1 70
$ 

In the scripts directory there is a shell script called 
run-once-using-read.  Open this up with your 
favourite editor (or gedit) and have a look at it.

The first line (that doesn’t start with a # character) is a 
read shell builtin command that reads some values from 
standard input and puts them in some shell variables.  
(You should be able to work out how the rest of the script 
has been modified to use these shell variables – if there 
is anything you don’t understand, ask the course giver or 
demonstrator.)

Let’s try this script out and see how it behaves.



  

Version: Lent 2020 45

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 45

Using read (2)
$ cd
$ rm -f *.dat stdout-* logfile *.png
$ scripts/run-once-using-read
Input parameters for zombie: 0.5 0.1 0.1 0.1 70 garbage
Traceback (most recent call last):
  File "zombie", line 101, in <module>
    N0 = long(sys.argv[5])
ValueError: invalid literal for long() with base 10: '70 garbage'
mv: cannot stat `zombie.dat': No such file or directory

$ gedit scripts/run-once-using-read &

#!/bin/bash

# Read in parameters from standard input
read -p "Input parameters for zombie: " alpha beta zeta delta population junk

So, on first try it seemed to do what we’d expect.  However, if we give it some 
input that should be invalid something slightly strange happens.  If we give it 6 
input parameters instead of 5, instead of complaining, or only using the first 5 
parameters, it puts the last two parameters together to form one argument    
(“70 garbage”) in the above example and runs the zombie program with that 
(we can see this is what is happening by inspecting the contents of the log file 
logfile).  This causes the zombie program to crash with an error message 
that is less clear than one might hope (an indication that the zombie program is 
(yet again) not as well written as we might like (an all too common complaint 
with software)).  (Also, as a result of zombie crashing, the mv command our 
shell script uses to rename zombie.dat file then complains that there is no file 
for it to rename.)

Regardless of how well or badly the zombie program handles invalid 
parameters, that fact that our script gives it mangled input to work with is an 
indication that our script is broken.  What is the problem and how can we fix it?

Recall how read works: if it reads more words (values) than it was given shell 
variables, it puts all the extra ones together in the last shell variable.  This is 
what is happening here, and it is undesirable.  We can fix this by giving read an 
extra “dummy” shell variable that we never use, but that is simply there to hold 
any extra junk it may read in.

Modify the run-once-using-read shell script in the scripts directory as 
shown above (remember to save it when you’ve finished).

  

Version: Lent 2020 46

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 46

Using read (3)
$ cd
$ rm -f *.dat stdout-* logfile
$ scripts/run-once-using-read
Input parameters for zombie: 0.5 0.1 0.1 0.1 70 garbage
$ ls
answers   gnuplot         zombie.gplt      scripts
bin       hello-function  logfile          source
Desktop   hello           zombie-70.dat    stdout-70
examples  zombie          run-zombie       treasure.txt

Now it works better.  If we give it more than 5 input parameters it doesn’t mangle 
the 5th argument that it passes to the zombie program.
(Note that the output of the ls command may not exactly match what is shown above – in particular there may be other files 
or directories show, and the colours may be slightly different.)

Now this may seem like a lot of trouble to go to for not much in the way of 
improvement to our script.  After all, the original run-once script could perfectly 
well accept a single set of 5 parameters without all these problems – it just 
wanted them on the command line rather than from standard input.

So, what’s the big deal about standard input?  After all, if I have lots of 
parameter sets to run I’m hardly going to sit there and type them all in one at a 
time!

Well, how many command line arguments can a shell script have?  The answer 
is quite a few but not an unlimited number.  In fact, If I have thousands of 
parameter sets, that’s definitely going to be too many for me to pass to my shell 
script all in one go (or even a small number of goes) on the command line.  So, 
how do we deal with situation?

Hmmmm, maybe if I could put all my thousands of parameter sets into a file, 
and then could somehow get my shell script to read in that file, one parameter 
set at at time, that might do it…  we need to be able to do a few more things to 
make that particular idea fly, so let’s have a look at some of them now…



  

Version: Lent 2020 47

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 47

Pipes
A pipe takes the

…output of one command…
…and passes it to another command as 
input…

command1 | command2

Pipes can be combined:
command1 | command2 | command3

A set of one or more pipes is known as a 
pipeline

A pipe takes the output of one command and feeds it to another 
command as input.  We tell the shell to do this using the | 
symbol.  So:

ls | less
takes the the output of the ls command and passes it to the 
more command, which displays the output of the ls command 
one screenful at a time.  We can combine several pipes by 
taking the output of the last command of each pipe and passing 
it to the first command in the next pipe, e.g.

ls | grep 'fred' | less
takes the output of ls and passes it to grep, which searches for 
lines with the string “fred” in them, and then the output of grep 
is passed to the less command to display one screenful at a 
time.  A set of one or more pipes is known as a pipeline.  This 
pipeline would show us all the files with the string “fred” in their 
name, one screenful at a time.

  

Version: Lent 2020 48

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 48

Using pipes
$ cd
$ rm -f *.dat stdout-* logfile
$ cat scripts/basic_param_set
0.005 0.0175 0.01 0.01 50
0.005 0.0175 0.01 0.01 100
0.005 0.0175 0.01 0.01 500
0.005 0.0175 0.01 0.01 1000
0.005 0.0175 0.01 0.01 3000
0.005 0.0175 0.01 0.01 5000
0.005 0.0175 0.01 0.01 10000
0.005 0.0175 0.01 0.01 30000
0.005 0.0175 0.01 0.01 50000
0.005 0.0175 0.01 0.01 500000
$ cat scripts/basic_param_set | scripts/run-once-using-read
$ ls
answers   gnuplot         zombie.gplt      scripts
bin       hello-function  logfile          source
Desktop   hello           zombie-50.dat    stdout-50
examples  zombie          run-zombie       treasure.txt

In the scripts directory there is a file called basic_param_set that 
contains a number of parameter sets.  We can use the cat command to 
display the contents of this file.  In fact, if we use the cat command on this 
file, the output of the cat command will be a list of parameter sets…

…and our run-once-using-read shell script will accept a complete 
parameter set as its input, so…

…if we connect the output of the cat command to the input of our shell 
script – by, say, using a pipe – maybe that will give us what we want?  Let’s 
try it!

Well, it almost does!, i.e. it does it for the first parameter set, but none of the 
others.  If we try running it again and again it will still only do it for the first 
parameter set in the file, so we’re not quite there, but close.  What we want 
is some way of telling the script to keep reading until there is no more stuff 
to read.

In fact, what we want is for the script to do some sort of loop: reading in a 
set of values, then running the zombie program, then reading in the next 
set of values, and so on.  How can we get it to do that?  Before we look at 
that, we need to understand something else first…



  

Version: Lent 2020 49

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 49

Exit Status (1)
• Every program (or shell builtin command) 

returns an exit status when it completes
• Number between 0 and 255
• Not the same as the program’s (or shell builtin 

command’s) output
• By convention:

§ 0 means the command succeeded
§ Non-zero value means the command failed

• Exit status of the last command run stored in 
special shell parameter named ?

The exit status of a program is also called its exit code, 
return code, return status, error code, error status, 
errorlevel or error level.

  

Version: Lent 2020 50

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 50

Exit Status (2)
$ ls
answers   gnuplot         zombie.gplt      scripts
bin       hello-function  logfile          source
Desktop   hello           zombie-70.dat    stdout-70
examples  zombie          run-zombie       treasure.txt

$ echo $?
0
$ ls zzzz
/bin/ls: zzzz: No such file or directory

$ echo $?
2

You get the value of the special parameter ? by using the 
construct ${?}, as in the above example.

Note that when the ls command is successful, its exit 
status is 0.  When, however, it fails (for example because 
the file does not exist, as here), its exit status is non-zero 
(“2”, in this case).   In our shell scripts, we will make 
significant use of the fact that a non-zero exit status of a 
program (or a shell builtin command) means that there was 
an error.

Please note that the output of the ls command may not exactly 
match what is shown on this slide – in particular, the colours may 
be slightly different shades and there may be additional files and/or 
directories shown (and/or – if you’ve recently cleaned up your 
home directory – you may not have all of the files shown here).



  

Version: Lent 2020 51

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 51

true, false
true do nothing, successfully
$ true
$ echo $?
0

false do nothing, unsuccessfully
$ false
$ echo $?
1

It’s worth introducing a couple of commands at this point which do nothing.  
(No, really.)

true does nothing and always succeeds, i.e. its exit status of 0.

false does nothing and always fails, i.e. its exit status is non-zero. 

You may be wondering what possible use there could be for such 
commands.  The most obvious use is for debugging: suppose you have a 
script that runs a program that take a long time, and you want to test the 
script to make sure it works.  You could replace the program that takes a 
long time with true to see what your script does if it thinks the program has 
succeeded.  Similarly, you could replace the program your script is calling 
with false if you want to see what your script will do if it thinks the program 
has failed.

Another use for true is when you want the shell to do nothing (this is known 
as a NOP or no-op command): for instance, shell functions and for loops 
must contain at least one command.  If, for some reason, you want a shell 
function or a for loop that does nothing (maybe because you haven’t gotten 
around to writing it yet but you want to be able to test the rest of your script) 
you can use true.  Then the shell won’t complain about the definition of 
your function or the syntax of your for loop being incorrect, but they won’t 
actually do anything.

  

Version: Lent 2020 52

Now that we know about the exit status of a command we 
are ready to meet the loop structure alluded to earlier:

We can repeat a collection of one or more commands using 
a while loop.  A while loop repeats a collection of 
commands as long as the result of some command is 
successful.  The result of a command is considered to be 
successful if it returns an exit status of 0 (i.e. if the command 
succeeded).  (The command we use in a while loop could 
also be a test of whether some expression is true.  We’ll see 
how to do that shortly.)

Note that even if set -e is in effect, or the first line of our 
shell script is
#!/bin/bash -e
the shell script will not exit if the result of the command the 
while loop depends on fails, since if it did, this would make 
while loops unusable(!).

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 52

commands
to repeat

Failure

Success

command
(or test)

rest
of script

while loop
Repeat some 
commands 
while some 
command (or 
test) succeeds



  

Version: Lent 2020 53

We use a while loop like this:
while <command> ; do

<some commands>
done

where <command> is a command (which could be a test; more on 
tests later), and <some commands> is a collection of one or more 
commands.  Note that if <command> is false the shell script will not 
exit, even if set -e is in effect or the first line of the shell script is      
           #!/bin/bash -e

As with a for loop, you can put the do on a separate line, in which 
case you can omit the semi-colon (;).

There are some examples of how to use while loops in the 
following files in the examples directory:

while1
while2

…but don’t look at those files just yet as we need to meet a few more 
things first…

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 53

while <command>  ; do

Keywords

Commands to
repeat

<some commands>

done Keyword indicating
end of loop

while
  

Version: Lent 2020 54

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 54

while
Repeat while <command> returns true

while <command> ; do
  <some commands>
done

To recap: we can repeat a collection of commands using a while loop.  A while 
loop repeats a collection of commands as long as the result of some command is 
true.  The result of a command is considered to be true if it returns an exit status 
of 0 (i.e. if the command succeeded).  (The command we use in a while loop 
could also be a test of whether some expression is true.  We’ll see how to do that 
shortly.)  We use a while loop like this:

while <command> ; do
<some commands>

done
where <command> is a command (which could be a test), and <some 
commands> is a collection of one or more commands.  Note that even if set -e 
is in effect, or the first line of the shell script is #!/bin/bash -e, the shell script 
will not exit if the result of <command> is not true.
As with a for loop, you can put the do on a separate line, in which case you can 
omit the semi-colon (;).

There are some examples of how to use while loops in the following files in the 
examples directory:

while1
while2

…but don’t look at those files just yet as we need to meet a few more things first…



  

Version: Lent 2020 55

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 55

Using while (1)
$ cd
$ cp -p scripts/run-once-using-read scripts/run-while-read
$ gedit scripts/run-while-read &
File: scripts/run-while-read
#!/bin/bash

# Read in parameters from standard input
#   and then run zombie with them
#   and run it again and again until there are no more
while read -p "Input parameters for zombie: " \
  alpha beta zeta delta population junk ; do

…
echo "Standard output: stdout-$population" >> logfile
done

Create a copy of the run-once-using-read shell script in the scripts directory 
called run-while-read.  Open this up with your favourite editor (or gedit) and 
modify it as shown above.

Basically, replace the line:
read -p "Input parameters for zombie: " alpha beta zeta delta population 
junk

with:
#   and then run zombie with them
#   and run it again and again until there are no more
while read alpha beta zeta delta population ; do

And at the very end of the file add the following line:
done

Remember to save the script when you’ve finished.

Now let’s try this script out and see if it does what we want:
$ cd
$ rm –f *.dat stdout-* logfile
$ cat scripts/basic_param_set | scripts/run-while-read
$ ls

  

Version: Lent 2020 56

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 56

Third exercise
Make a copy of multi-run and             make it 
read all the arguments for zombie in from 
standard input using a while loop:

$ cd
$ cp -p scripts/multi-run scripts/multi-run-while

File: scripts/multi-run-while

#!/bin/bash
set -e

…
# Run program once for each argument
#  Note: *no* quotes around $fixed_parameters
#        or they'll be interpreted as one argument!
for population in "$@" ; do
  run_program $fixed_parameters "$population"
done

…
10 minutes

The multi-run shell scripts is in the scripts directory of your home directory.  Make a copy 
of it called multi-run-while, also in the scripts directory, and work on that.  Your task is 
to get multi-run-while to read in all the arguments for zombie from standard input (all its 
arguments, not just the fifth one) using a while loop.

Start by deleting the following two lines:
# Parameters that stay the same each run
myFIXED_PARAMS="0.005 0.0175 0.01 0.01"
…and you should also get rid of any other references to the shell variable myFIXED_PARAMS – 
you won’t be using it in this script.

We have gone through everything you need to do this exercise.  You should comment the 
modifications you make to your shell script, preferably as you are writing it.

And when you finish this exercise, please do take a short break before we start again with the 
solution.  (And that’s “break” as in “break from the computer” not “break to check my e-mail”.)

You can check that you’ve done it correctly by trying to run your multi-run-while script 
(remember to save it after you’ve made your modifications!):
$ cd
$ rm –f *.dat stdout-* logfile
$ ls
$ cat scripts/basic_param_set | scripts/multi-run-while
$ ls

Hint: Try copying the run-while-read script…



  

Version: Lent 2020 57

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 57

Recap: standard input/while loops
• Command substitution $(command) can be used to get 

the output of a command into a shell variable

• Use mktemp to make temporary files and directories

• read gets values from standard input

• Pipes connect one command’s output to another’s input

• The command true does nothing but is considered to 
be true (its exit status is 0); the command false does 
nothing but is not considered to be true (non-zero exit 
status).

• while loops repeat some commands while something 
is true – can be used to read in multiple lines of input 
with read

Note that while loops can contain other while 
loops, and they can also contain for loops (or 
both).  Similarly, for loops can contain while 
loops or other for loops (or both).

  

Version: Lent 2020 58

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 58

Tests
Test to see if something 
is true:

[[ <expression> ]]

     [[ $a –eq $b ]]
  [[ $a –le 42 ]]
  [[ $a -gt 0 ]]
  [[ $str = "aardvark" ]]

A test is basically the way in which the shell evaluates an expression to see if it is true.   
There are many different tests that you can do, and we only list a few here:
[[ $a –lt $b ]] true if and only if the integer a is less than the integer b

[[ $a –le $b ]] true if and only if the integer a is less than or equal to the integer b

[[ $a –eq $b ]] true if and only if the integer a is equal to the integer b

[[ $a –ne $b ]] true if and only if the integer a is not equal to the integer b

[[ $a –ge $b ]] true if and only if the integer a is greater than or equal to the integer b

[[ $a –gt $b ]] true if and only if the integer a is greater than the integer b

In the above tests, a and b can be any integers.  Recall that shell variables can hold pretty 
much any value we like – they can certainly hold integer values, so a and/or b in the above 
expressions could come from shell variables, e.g.

[[ $VAR –eq 5 ]]
Or, equivalently:

test "${VAR}" –eq "5"
is true if and only if the shell variable VAR contains the value “5”.

Note that you must have a space between the square brackets [[  ]] 

N.B.: Use -eq for testing integers, and use == or = for testing the equality of 
strings.
N.B. Use help test | less to list the available tests and what they do.



  

Version: Lent 2020 59

The shell can also do (primitive) integer arithmetic, which can be 
very useful.

The construct $((<arithmetic-expression>)) means replace 
$((<arithmetic-expression>)) with the result of the integer 
arithmetic expression                <arithmetic-expression>.  This 
is known as arithmetic expansion.  (The arithmetic expression is 
evaluated as integer arithmetic.)

Note that C syntax is used within the brackets, therefore you 
should use the bare variable name (This is, alas, inconsistent 
with the shell’s behaviour elsewhere)  We can put quotes 
around the entire arithmetic expansion construct, though, 
although this should not be necessary because the output 
should be numeric.
Use help let on the bash command line to find out what 
operations are available and how to use them.

 

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Three 16

Recap: Arithmetic Expansion 
$(( ))

• Returns the value of an integer 
arithmetic operation

• Operands must be integers (so no 
decimals, e.g. 2.5, etc)

• Use bare variable names within the 
arithmetic expression

$(( <arithmetic-expression> ))

Example:
$(( VAR + 56 ))

  

Version: Lent 2020 60

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 60

while loops that count
Consider the following while loop:

counter=1
while [[ counter -le 6 ]] ; do
  echo $counter
  counter=$(( counter + 1 ))
done

When we put together arithmetic tests, while loops and 
arithmetic expansion, we can construct a while loop that 
counts for us, as in the above example.  Can you figure 
out what the above loop will do?

When you think you know, try running the script while2 
in the examples directory of your home directory.  That 
will show you the output of the above while loop, 
immediately followed by the output of a very similar 
while loop where counter starts off with the value 0 
rather than 1.

Note that while loops can (and often do) contain other 
while loops (or for loops).  We say that one loop is 
nested inside the other one.



  

Version: Lent 2020 61

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 61

Using while (2)
$ cd
$ cat scripts/generate-params

#!/bin/bash

betas="0.0075 0.01 0.0175 0.0185 0.0195"
alpha=0.005
zeta=0.01
delta=0.01

for beta in $betas ; do
  population=50
  while [[ $population -le 50000 ]] ; do
    echo "$alpha $beta $zeta $delta $population" >> new_param_set
    population=$(( population  * 10 ))
  done
done

$ scripts/generate-params
$ more new_param_set

Examine the file called generate-params in the scripts 
directory of your home directory (shown above).

Then try it out and see what it does.

  

Version: Lent 2020 62

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 62

Generalising multi-run-while
File: scripts/multi-run-while

#!/bin/bash
set -e

…
"${program}" "${@}" > "stdout-$1-$2-$3-$4-$5"

…
mv zombie.dat "zombie-$1-$2-$3-$4-$5.dat"

…
echo "Output file: zombie-$1-$2-$3-$4-$5.dat" >> "${log_file}"
echo "Standard output: stdout-$1-$2-$3-$4-$5" >> "${log_file}"

Modify the multi-run-while script in the scripts directory as shown 
above.
(Remember to save it when you’ve finished.)

Basically we are replacing all the instances of the string “${5}” with the 
string “${1}-${2}-${3}-${4}-${5}”.  This means that now, instead of 
our output files being based on the fifth argument that is passed to 
zombie, they are based on all the parameters in the parameter set.  This 
is is clearly necessary as we start to experiment with varying parameters 
other than just the fifth one.

And we finish with an exercise.

If you want to do the exercise outside of class, the files you’ll need can be 
found at:
https://help.uis.cam.ac.uk/help-support/training/downloads/ 

course-files/programming-student-files/shellscriptingsci/ 
shellscripting-files/exercises/day-two



  

Version: Lent 2020 63

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 63

If you’re not coming back: 
Give us Feedback!

If, and only if, you will not be attending the 
next day of the course then please make 
sure that you fill in the Course Review 
form online, accessible under “feedback” 
on the main MCS Linux menu, or via:

http://feedback.training.cam.ac.uk/uis/

If you are coming to further sessions of this 
course, then you should fill in the feedback 
form at the last session you attend.

  

Version: Lent 2020 64

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 64

Final exercise – Part One

Improve the run_program function in 
multi-run-while so that as well as 
running zombie it also runs gnuplot 
(using the zombie.gplt file) to plot a 
graph of the output.

This exercise should be fairly straightforward.  One sensible way of approaching it 
would be as follows:

1. Figure out the full path of the zombie.gplt file.  Store it in a shell variable 
(maybe called something like gnuplot_file).

2. Immediately after running zombie, run gnuplot:
gnuplot "${gnuplot_file}"

3. Rename the zombie.png file produced by gnuplot along the same lines as 
the zombie.dat file produced by zombie is renamed.

Make sure you test the script after you’ve modified it and check that it does 
what you would expect.

This exercise highlights one of the advantages of using functions: we can improve 
or change our functions whilst leaving the rest of the script unchanged.  In 
particular, the structure of the script remains unchanged.  This means two things: 
(1) if there are any errors after changing the script they are almost certainly in the 
function we changed, and (2) the script is still doing the same kind of thing (as we 
can see at a glance) – we’ve just changed the particulars of one of its functions.



  

Version: Lent 2020 65

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 65

Final exercise – Part Two
Now create a new shell script based on                
multi-run-while that will run zombie three times 
for each parameter set the script reads in on standard 
input, changing the fifth parameter each time as 
follows:

For a given parameter set  a b c d e, first your script 
should run zombie with the parameter set:

a b c d 50
…then with the parameter set:

a b c d 500
…and then with the parameter set:

a b c d 5000

An example may help to make this task clearer.  Suppose your script reads in the parameter set:
0.005 0.0175 0.01 0.01 70

…it should then run the zombie program 3 times, once for each of the following parameter sets:
0.005 0.0175 0.01 0.01 50
0.005 0.0175 0.01 0.01 500
0.005 0.0175 0.01 0.01 5000

The first thing to do is to make a copy of the multi-run-while script and work on the copy – I 
suggest you call your copy something like multi-50-500-5000:
$ cd
$ cp –p scripts/multi-run-while scripts/multi-50-500-5000

Now, currently the script will read in a parameter set and then call the run_program function to 
process that parameter set.  Clearly, instead of passing all five parameters that the script reads in, 
your new script will now only be passing the first (alpha), second (beta), third (zeta), and fourth 
(delta) parameters that it has read in.  However, the zombie program requires 5 parameters (and it 
cares about the order in which you give them to it), so your script still needs to give it 5 parameters, it 
is just going to ignore the fifth parameter it has read (population) and substitute values of its own 
instead.

There are two approaches you could take.  One would be to call the run_program function 3 times, 
once with 50 as the fifth parameter, once with 500 as the fifth parameter and once with 5000 as the 
fifth parameter.  The other would be to use some sort of loop that calls the run_program function, 
using the appropriate value (50, 500 or 5000) for the fifth parameter on each pass of the loop.  I want 
you to use the loop approach.

Hint: Use a for loop.

  

Version: Lent 2020 66

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 66

Final exercise – Part Three
Now create a new shell script, based on the script you created in the previous 

part of the exercise, that does the following:
Instead of running zombie three times for each parameter set it reads in, this 

script should accept a set of values on the command line, and use those 
instead of the hard-coded 50, 500, 5000 previously used.

Thus, for each parameter set it reads in on standard input, it should run zombie 
substituting, in turn, the values from the command line for the fifth parameter 
in the parameter set it has read in.

So, if the script from the previous part of the exercise was called               
multi-50-500-5000, and we called this new script                     

  multi-sizes (and stored both in the scripts directory of our home 
directory), then running the new script like this:

$ cd
$ cat scripts/param_set | scripts/multi-sizes 50 500 5000

should produce exactly the same output as running the old script with the 
same input file:

$ cd
$ cat scripts/param_set | scripts/multi-50-500-5000

The first thing to do is to make a copy of the previous script (which I suggested you call 
multi-50-500-5000) and work on the copy – I suggest you call your copy something 
like multi-sizes:
$ cd
$ cp –p scripts/multi-50-500-5000 scripts/multi-sizes

You may be wondering what the point of the previous script and this script are.  
Consider what these scripts actually do: they take a parameter set, vary one of its 
parameters and then run some program with the modified parameter sets.  Why would 
we want to do this?
Well, in this example the parameter we are varying specifies the size of the population 
which our program will model.  You can easily imagine that we might have a simulation 
or calculation for which, for any given parameter set, interesting things happened in 
various population sizes.  These scripts allow us to take each parameter set and run it 
several times for different sizes of populations.  We can then look at each parameter set 
and see how varying the size of the population affects the program’s output for that 
parameter set.
If we were using the parameter sets in the scripts/param_set file, we might notice 
that these parameters are the same except for the second parameter which varies.  So 
if we pipe those parameter sets into one of these scripts, we are now investigating how 
the output of the zombie program varies as we vary two of its input parameters, which 
is kinda neat, doncha think? ☺

Hint: Modify the loop you used in the previous script to loop over all the command line arguments rather than some hard 
coded values.  If you don’t remember the construct that gives you all the command line arguments have a look at the recap of 
the previous day of this course.



  

Version: Lent 2020 67

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day Two 67

Final exercise – Files

All the files (scripts, zombie program, etc) 
used in this course are available on-line at:

https://help.uis.cam.ac.uk/ 
help-support/training/downloads/ 

course-files/programming-student-files/ 
shellscriptingsci/shellscripting-files/ 

exercises/day-two

We’ll be looking at the answers to this exercise on 
the next day of this course, so please make sure you 
have attempted this exercise before you come to the 
next day of this course.


