

Version: Lent 2020 1

Simple Shell Scripting for
Scientists

Anna Langley
Ben Harris

University of Cambridge Information Services

Day One

IMPORTANT:
If you are doing the “Simple Shell Scripting for Scientists”
course in one of our scheduled classes (as opposed to
reading these course notes on-line, for example), then
you should have received a user ID to use for the course:
it will probably be something like yXXX (where XXX is a
number).

Make sure you make a note of this user ID and bring it
with you to all sessions of the course. Also, it is a very
good idea to bring your copy of earlier sessions’ course
notes with you to later sessions as we do not guarantee to
keep spare copies of earlier sessions’ course notes on
hand should you need to refer to them.

Version: Lent 2020 2

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 2

Introduction
• Who:

§ Anna Langley, Infrastructure Division, UIS
§ Ben Harris, Infrastructure Division, UIS

• What:
§ Simple Shell Scripting for Scientists course, Day One
§ Part of the Scientific Computing series of courses

• Contact (questions, etc):
§ scientific-computing@uis.cam.ac.uk

• Health & Safety, etc:
§ Fire exits

• Please use mobiles considerately

As this course is part of the Scientific Computing
series of courses run by the University Information
Services, all the examples that we use will be more
relevant to scientific computing than to system
administration, etc.
This does not mean that people who wish to learn
shell scripting for system administration and other
such tasks will get nothing from this course, as the
techniques and underlying knowledge taught are
applicable to shell scripts written for almost any
purpose. However, such individuals should be
aware that this course was not designed with them
in mind.

Version: Lent 2020 3

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 3

We finish at:

17:00
The course officially finishes at 17.00, so don't expect to
finish before then. If you need to leave before 17.00
you are free to do so, but don’t expect us to have
covered all today's material by then. How quickly we
get through the material varies depending on the
composition of the class, so whilst we may finish early
you should not assume that we will. If you do have to
leave early, please leave quietly.

If, and only if, you will not be attending any of the
next two days of the course then please make sure
that you fill in the Course Review form online,
accessible under “feedback” on the main MCS Linux
menu, or via:
 http://feedback.training.cam.ac.uk/uis/

Version: Lent 2020 4

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 4

What we don’t cover
• Different types of shell:

§ We are using the Bourne-Again SHell
(bash).

• Differences between versions of bash
• Very advanced shell scripting – try

one of these courses instead:
§ “Python 3: Introduction for Absolute Beginners”
§ “Python 3: Introduction for Those with

Programming Experience”

bash is probably the most common shell on modern Unix/Linux
systems – in fact, on most modern Linux distributions it will be the
default shell (the shell users get if they don’t specify a different one).
Its home page on the WWW is at:

https://www.gnu.org/software/bash/

We will be using bash 4.4 in this course, but everything we do should
work in bash 2.05 and later. Version 4, version 3 and version 2.05 (or
2.05a or 2.05b) are the versions of bash in most widespread use at
present. Most recent Linux distributions will have one of these
versions of bash as one of their standard packages. The latest
version of bash (at the time of writing) is bash 5.0, which was
released in January 2019.

For details of the “Python 3: Introduction for Absolute Beginners”
course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-python
For details of the “Python 3: Introduction for Those with Programming
Experience” course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-python4progs

Version: Lent 2020 5

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 5

Outline of Course
1. Prerequistes & recap of Unix commands

SHORT BREAK
2. Very simple shell scripts

SHORT BREAK
3. More useful shell scripts:

§ Variables (and parameters)
§ Simple command-line processing
§ Output redirection
§ Loop constructs: for

Exercise

The course officially finishes at 17.00, but the intention
is that the lectured part of the course will be finished by
about 16.30 or soon after, and the remaining time is for
you to attempt an exercise that will be provided. If you
need to leave before 17.00 (or even before 16.30),
please do so, but don’t expect the course to have
finished before then. If you do have to leave early,
please leave quietly.

If, and only if, you will not be attending any of the
next two days of the course then please make sure
that you fill in the Course Review form online,
accessible under “feedback” on the main MCS Linux
menu, or via:
 http://feedback.training.cam.ac.uk/uis/

Version: Lent 2020 6

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 6

Pre-requisites

• Ability to use a text editor under Unix/Linux:
§ Try gedit if you aren’t familiar with any other Unix/Linux

text editors

• Familiarity with the Unix/Linux command line
(“Unix: Introduction to the Command Line
Interface” course):
§ Common Unix/Linux commands (ls, rm, etc)
§ Piping; redirecting input and output
§ Simple use of environment variables
§ File name globbing (“pathname expansion”)

For details of the “Unix: Introduction to the Command Line
Interface” course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-unixintro1

The notes from this course are available on-line at:
https://help.uis.cam.ac.uk/help-support/training/
downloads/course-files/programming-student-files/unix-cli

Other reference material you may find useful:
Advanced Bash Scripting Guide
http://www.tldp.org/LDP/abs/abs-guide.pdf

Bash Reference Manual
https://www.gnu.org/software/bash/manual/

https://www.gnu.org/software/bash/manual/bash.pdf

Google Shell Style Guide (basis for coding style in this course)
https://google.github.io/styleguide/shell.xml

Version: Lent 2020 7

As this is a shell scripting course, we are going to need to
interact with the Unix shell.
To start a shell, click on “Activities” in the top-left corner of
the screen, then click on the “Terminal” icon in the
desktop application bar.
A Terminal window will then appear.

Version: Lent 2020 8

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 8

Unix commands (1)
cat Display contents of a file
$ cat welcome
Welcome to the Simple Shell Scripting for Scientists course!

This course is intended to be run on MCS Linux 2012/2013.

cd change directory
$ cd /tmp
$ cd

chmod change the mode (permissions) of
a file or directory

$ chmod a+r treasure.txt

If you give the cd command without specifying a directory then it will
change the directory to your home directory (the location of this directory is
specified in the HOME environment variable – more on environment
variables later).

The chmod command changes the permissions of a file or directory (in this
context, the jargon word for “permissions” is “mode”). For instance, the
above example gives read access to the file treasure.txt for all users
on the system. Note that the chmod command has little effect on the MCS
Linux systems used in this course. Unix permissions were covered in the
“Unix: Introduction to the Command Line Interface” course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-unixintro1
The notes from this course are available on-line at:

 https://help.uis.cam.ac.uk/help-support/training/
downloads/course-files/programming-student-files/unix-cli

Version: Lent 2020 9

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 9

Unix commands (2)
cp copy files and/or directories
$ cp welcome /tmp/welcome-copy
Options:
-p preserve (where possible) files’ owner, permissions

and date
-f if unable to overwrite destination file, delete it and try

again, i.e. forcibly overwrite destination files
-R copy any directories Recursively, i.e. copy their

contents
-i prompt before overwriting anything (be interactive –

ask the user)
$ cp –p welcome /tmp/welcome-copy

Note that the cp command has many other
options than the four listed above, but
those are the options that will be most
useful to us in this course.

Version: Lent 2020 10

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 10

Unix commands (3)
date display/set system date and time
$ date
Tue Mar 10 14:21:34 GMT 2020

echo display text
$ echo "Hello"
Hello

env With no arguments, display
environment variables (example
later)

Please note that if you try out the date command,
you will get a different date and time to that shown on
this slide (unless your computer’s clock is wrong!).
Also, note that usually only the system administrator
can use date to set the system date and time.

Note that the echo command has a few useful
options, but we won’t be making use of them today,
so they aren’t listed.

Note also that the env command is a very powerful
command, but we will not have occasion to use it for
anything other than displaying environment variables
(see later), so we don’t discuss its other uses.

Version: Lent 2020 11

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 11

Unix commands (4)
grep find lines in a file that match a given pattern
$ grep 'MCS' welcome
This course is intended to be run on MCS Linux.

Options:
-i search case insensitively
-w only match whole words, not parts of words

$ grep 'mcs' welcome
$ grep -i 'mcs' welcome
This course is intended to be run on MCS Linux.

The patterns that the grep command uses to find text in
files are called regular expressions.
Note that the grep command has many, many other
options than the two listed above, but we won’t be using
them in this course.

Version: Lent 2020 12

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 12

Unix commands (5)
ln create a link between files (almost always used with

the -s option for creating symbolic links)
Options:
-f forcibly remove destination files (if they exist)
-i prompt before removing anything (be interactive –

ask the user)
-s make symbolic links rather than a hard links

$ ln –s ~/welcome /tmp/welcome-link
$ cat welcome
Welcome to the Simple Shell Scripting for Scientists course!

This course is intended to be run on MCS Linux.

$ cat /tmp/welcome-link
Welcome to the Simple Shell Scripting for Scientists course!

This course is intended to be run on MCS Linux.

The ln command creates links between files.
In the example above, we create a symbolic link to the file
welcome in ~ and then use cat to display both the original file
and the symbolic link we’ve created. We see that they are
identical.
There are two sort of links: symbolic links (also called soft links or
symlinks) and hard links. If you want a more detailed explanation
of symbolic links and hard links, see the following Wikipedia
articles:

https://en.wikipedia.org/wiki/Symbolic_link
https://en.wikipedia.org/wiki/Hard_link

Version: Lent 2020 13

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 13

Unix commands (6)
ls list the contents of a directory
$ ls
answers Desktop gnuplot zombie.py source
bin examples hello scripts treasure.txt

Options:
-d List directory name instead of its contents
-l use a long listing that gives lots of

information about each directory entry
-R list subdirectories Recursively, i.e. list their

contents and the contents of any
subdirectories within them, etc

If you try out the ls command, please note that its
output may not exactly match what is shown on this
slide – in particular, the colours may be slightly
different shades and there may be additional files
and/or directories shown.

Note also that the ls command has many, many
more options than the three given on this slide, but
these three are the options that will be of most use to
us in this course.

Version: Lent 2020 14

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 14

Unix commands (7)
less Display a file one screenful of text at a time
$ less treasure.txt
The Project Gutenberg EBook of Treasure Island, by Robert Louis Stevenson

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever. You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org

Title: Treasure Island

Author: Robert Louis Stevenson

Release Date: February 25, 2006 [EBook #120]

Language: English

Character set encoding: ASCII

*** START OF THIS PROJECT GUTENBERG EBOOK TREASURE ISLAND ***

treasure.txt

The less command displays a file one screenful of text at a time.
Use the space bar to move forward one screen at a time, use b to go back
one screen at a time. You can use the up and down arrow keys to scroll
through the file one line at a time.
On very old systems there may not be a less command. If not try the
more command. It is older and less powerful, but it will be on every
system you ever use.
But why on earth is it called less? It refers to the saying "less is more"
because it is more powerfull than the older more command.
In the Unix/Linux world things are sometimes playfully named.

Version: Lent 2020 15

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 15

Unix commands (8)
man Display the on-line reference manual for a

command
$ man bash
BASH(1) BASH(1)

NAME
 bash - GNU Bourne-Again SHell

SYNOPSIS
 bash [options] [file]

COPYRIGHT
 Bash is Copyright (C) 1989-2011 by the Free Software Foundation, Inc.

DESCRIPTION
 Bash is an sh-compatible command language interpreter that executes
 commands read from the standard input or from a file. Bash also incor‐
 porates useful features from the Korn and C shells (ksh and csh).

 Bash is intended to be a conformant implementation of the Shell and
 Utilities portion of the IEEE POSIX specification (IEEE Standard
 1003.1). Bash can be configured to be POSIX-conformant by default.

OPTIONS
 All of the single-character shell options documented in the descrip‐
 tion of the set builtin command can be used as options

 Manual page bash(1) line 1 (press h for help or q to quit)

The man command displays the on-line reference manual
for a command. Such manuals are called “man pages”.
Whilst not all commands have man pages, many do, and,
in particular, most of the Unix commands we use in this
course do.
The man command has the functionality of the less
command built into it so that it can display the man page
one screenful of text at a time. To advance a screen,
press the space bar. To go back a screen type “b”, and to
quit man press the “Q” key.
A very useful option to man is -k which searches the short
descriptions and man pages for the keyword you give it.
For example:

man -k printf

Version: Lent 2020 16

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 16

Unix commands (9)
mkdir make directories
$ mkdir /tmp/mydir
Options:
-p make any parent directories as required;

also if directory already exists, don’t
consider this an error

$ mkdir /tmp/mydir
mkdir: cannot create directory `/tmp/mydir': File exists

$ mkdir –p /tmp/mydir
$

Note that the mkdir command has other options,
but we won’t be using them in this course.

Version: Lent 2020 17

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 17

Unix commands (10)
mv move or rename files and directories
$ mv /tmp/welcome-copy /tmp/junk

Options:
-f do not prompt before overwriting files or

directories, i.e. forcibly move or rename the
file or directory; this is the default behaviour

-i prompt before overwriting files or directories
(be interactive – ask the user)

-v show what is being done (be verbose)

Note that the mv command has other options, but we
won’t be using them in this course. Note also that if
you move a file or directory between different
filesystems, mv actually copies the file or directory to
the other filesystem and then deletes the original.

Version: Lent 2020 18

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 18

Unix commands (11)
pwd print full path of current working

directory
$ cd /tmp
$ pwd
/tmp

Options:
-P print the full Physical path of the current

working directory (i.e. the path printed will
not contain any symbolic links)

Note that the pwd command has another option, but
we won’t be using it in this course.

Version: Lent 2020 19

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 19

Unix commands (12)
rm remove files or directories
$ rm /tmp/junk

Options:
-f ignore non-existent files and do not ever

prompt before removing files or directories, i.e.
forcibly remove the file or directory

-i prompt before removing files or directories (be
interactive – ask the user)

-R remove Recursively (directories and contents)
-v show what is being done (be verbose)

Note that the rm command has other options, but
we won’t be using them in this course. You can
learn more about them using man rm

Version: Lent 2020 20

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 20

Unix commands (13)
rmdir remove empty directories
$ rmdir /tmp/mydir

The rmdir command has various options but we
won’t be using them on this course.
N.B. If you really wish to remove non-empty
directories, use the rm command with suitable
options.

Version: Lent 2020 21

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 21

What is a shell script?
• Text file containing commands

understood by the shell

• Very first line is special:
#!/bin/bash

• File has its executable bit set
chmod a+x

Recall that the chmod command changes the permissions on
a file. chmod a+x sets the executable bit on a file for all
users on the system, i.e. it grants everyone permission to
execute the file. (Note though, that all files in your home
directory on the MCS Linux systems used in this course
automatically have their executable bit set, so during this
course you don’t need to explicitly use the chmod command
on such files.) Unix file permissions were covered in the
“Unix: Introduction to the Command Line Interface” course,
see:
 https://www.training.cam.ac.uk/ucs/course/ucs-unixintro1

The notes from this course are available on-line at:
 https://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/UnixCLI

Version: Lent 2020 22

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 22

How to create a shell script?
• Open your preferred text editor (e.g.

gedit)

• Make this be the first line of the file
#!/bin/bash

• Make it executable using command:
chmod a+x my_script

In this course we're using the gedit text editor. If you are
more comfortable using a different one, then feel free to use
it if it's available on your workstation.

It's a good idea to start gedit (or any other graphical editor)
in the background by using an ampersand at the end of the
command, so that you can continue to use the shell. For
example:
gedit my_script &

Note that it is good practice to include comments at the start
of a script explaining what it is for and how to use it.

Version: Lent 2020 23

Previous people who have taken this course have tended to describe it as
difficult. A close examination of their feedback has revealed that many of those
who have difficulty haven’t mastered the basic Unix commands that we assume
you are already familiar with and/or aren’t familiar enough with the Unix
command line. So we now start the course by giving you an exercise that tests
your knowledge of basic Unix commands – if you find this exercise difficult,
then you aren’t ready to do this course, I’m afraid.
If you do find this exercise difficult then I suggest that you leave now and try
the course again when you’ve practiced your Unix a bit more – it really won’t be
a good use of your time, that of your fellow course attendees, and that of the
course giver, for you to try the course at this point. Sorry, but this course really
does require you to be on top of your basic Unix commands.

So, the exercise is to write a trivial shell script called setup-play that does what it
says on the slide above. It’s a trivial shell script so it doesn’t need to do any error
checking or anything fancy like that. Note that the first time you run this script the
play subdirectory won’t exist (unless you’ve created it manually yourself), but
your script should still try to remove it. Your shell script should print out on the
screen what it is going to do before it actually does it.

Everything you need to do this exercise was covered on the “Unix: Introduction to the
Command Line Interface” course, the course notes of which are available on-line as a PDF
file:
 https://help.uis.cam.ac.uk/help-support/training/downloads/

 course-files/programming-student-files/unix-cli/unix-cli-files/notes.pdf

Version: Lent 2020 24

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 24

Run a simple shell script

$./hello
Hello. I am a shell script.
Who are you?
$

The name of the shell script we are running is “hello”. Since it is in the current directory, we
can tell the shell to execute it by typing “./” in front of its name, as shown on this slide. This
basically means “execute the file hello that is to be found in the current directory” – if there
is no file of that name in the current directory, the shell returns a “No such file or
directory” error. It is useful to know how to use “./” for two reasons:

• If you ask the shell to run a program by just typing the name of the program and pressing
return, it looks for the program in all the directories specified in the PATH environment
variable (more on environment variables later). If the current directory isn’t one of those
specified in the PATH environment variable, then it wouldn’t find the hello that we want it
to execute. By explicitly telling the shell to look in the current directory, it finds the hello
script that we are looking for.

• There might be another program called “hello” in a directory that is specified in the PATH
environment variable. The shell looks for programs to execute in the directories specified
in the PATH environment variable in the order they are specified in that environment
variable. It then executes the first program it finds that matches the name given. So if
there was a file called “hello” in some other directory specified in the PATH environment
variable, then that might be executed instead.

You can achieve the same effect by asking the shell to run a program and giving it the path to
the program, e.g. if hello was in the directory /home/y250, then typing:

/home/y250/hello
and pressing return would execute hello.

Version: Lent 2020 25

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 25

Examining hello
$ ls –l hello
-rwx------ 1 y250 domain users 69 2020-03-06 11:35 hello

$ cat hello
#!/bin/bash

echo "Hello. I am a shell script."
echo "Who are you?"

$ gedit hello &

Remember that the ls command lists the files in a directory and that it can take options
that modify its behaviour. ls -l <file> gives us a lot of information about the particular
file <file>. In particular, it shows us the file’s permissions (in this case: “-rwx------”),
and we see that this file indeed has its execute bits set. Note that the exact text you see
when you execute “ls -l hello” on the computer in front of you may be slightly different
– in particular, the owner (“y250”) and group (“y250”) of the file will be different.

Recall that cat <file> displays the contents of the file <file>.

gedit <file> starts the editor gedit and loads the file <file>. The “&” tells the shell to
run gedit in the background, so that we go straight back to the shell prompt and can carry
on doing other things rather than waiting until we quit gedit. Note that because we’re
running gedit in the background, after we quit gedit the shell will print a message saying
“Done” (along with some other text) to indicate that the gedit program that was running in
the background has finished.
You don’t have to use gedit to edit the file, you can use whatever editor you are most
comfortable with.

Remember that the echo command prints out the text that it has been given on standard
output (normally the screen). It is a shell builtin command, i.e. a command that is
implemented by the shell itself as opposed to an external program that the shell runs on
your behalf. For example, the ls command is not a shell builtin command – it is an
external program that the shell executes when you type “ls”.

Version: Lent 2020 26

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 26

Errors in shell scripts (1)

Change:
echo "Hello. I am a shell script."

to:
echoq "Hello. I am a shell script."

$./hello

Who are you?

$

(Now change “echoq” back to “echo”.)

./hello: :line 3 echoq: command not found

Make sure you save the file before running it again, or the changes
won’t take effect.

As you can see, even if there is an error in the shell script, the shell
script simply reports the error and merrily continues running. There
are many different sorts of errors one can make in writing a shell
script, and for most of them the shell will report the error but
continue running. There is one type of error that will stop the
execution of the shell script: a syntax error (see next slide).

Also note that the shell tells us what the error is – “command not
found” (as there is no “echoq” command) – and the line on which
it occurred (line 3). This makes it easier to track down the error
and fix it.

You can force the shell script to quit when it encounters an error by
using the set shell builtin command like this:

set -e
as we will see later.

Version: Lent 2020 27

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 27

Errors in shell scripts (2)

Change:
echo "Who are you?"

to:
(echo "Who are you?"

$./hello
Hello. I am a shell script.

$

(Now remove the extraneous open bracket “(”.)

./hello: : syntax error: unexpected end of fileline 5

Make sure you save the file before running it again, or the
changes won’t take effect.

If there is a syntax error in the shell script, the shell script
will abort once it encounters the error and won’t run the
rest of the script, because it doesn’t understand what it
should do.

Note that although the error is actually at line 4, it is not
until line 5 that the shell decides something is wrong and
tells us anything. Get used to this behaviour! – it is
very annoying, as it makes debugging shell scripts
painful, but that’s just the way it is. When the shell tells
you there is a syntax error at line n, you should take that
to mean that there is a syntax error somewhere between
the last command the script managed to execute and line
n (inclusive).

Version: Lent 2020 28

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 28

Explicitly using bash to run the
script

$ bash ./hello
Hello. I am a shell script.
Who are you?

$ bash -x ./hello
+ echo 'Hello. I am a shell script.'
Hello. I am a shell script.
+ echo 'Who are you?'
Who are you?
$

There’s another way we can run a shell script, which is by explicitly
starting a new instance of the bash shell and telling it to execute the
commands in the file containing the shell script. (Once the shell script has
finished the instance of bash that was running it will silently exit, leaving
us in our original shell.)
A very important point to note is that if we run the shell script this way, the
magic #!… first line of the shell script is ignored. (This behaviour is not as
surprising as it might first seem, since that first line doesn’t mean anything to bash,
our shell – it is used by the operating system to work out what program it should use
to run our shell script.)

One very nice consequence of running a shell script like this is that we
can change how the shell script is run without modifying the file containing
the script: we can use bash -x to run the shell script. Starting bash with
the -x option causes it to print commands and their arguments as they
are executed.

Version: Lent 2020 29

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 29

Changing how the shell script is
run

$ bash -x ./hello
+ echo 'Hello. I am a shell script.'
Hello. I am a shell script.
+ echo 'Who are you?'
Who are you?
$

It is possible to modify the shell script itself so that the
bash shell used to run it is started with the -x option by
modifying the magic #!… first line of the script. But do
not do this.

As we have just seen, starting the bash shell with the -
x option makes it print commands and their arguments
as they are executed.

There’s also another way we can get this behaviour,
which we are about to meet.

Version: Lent 2020 30

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 30

set -x, set +x
Print commands and their arguments just

before they are executed:

set -x

Don’t print commands and their arguments
just before they are executed (default):

set +x

These are commands that you can use within scripts to alter their behaviour.
Mostly you would use this to assist with debugging.

Version: Lent 2020 31

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 31

set -x, set +x example
Add the lines in red to hello as shown:
set -x
echo "Hello. I am a shell script."
set +x
echo "Who are you?"

$./hello
+ echo 'Hello. I am a shell script.'
Hello! I am a shell script.
+ set +x
Who are you?

$

(Now remove the “set -x” and “set +x” lines.)

(Make sure you save the file before running it again, or
the changes won’t take effect.)

By using set -x and set +x we can turn off and on the
“print the command and its arguments before executing
it” behaviour. This can be extremely helpful in
debugging, as it allows us to see what is happening in the
particular part of the script we are interested in, rather
than having to see a list of all the commands (and their
arguments) that came before that part of the script as
well.

Version: Lent 2020 32

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 32

What are we trying to do?

Scientific computing

i.e. shell scripts that do
some useful scientific
work, e.g. repeatedly
running a simulation
or analysis with different data

Recall the name of this course (“Simple Shell Scripting for Scientists”)
and its purpose: to teach you, the scientist, how to write shell scripts
that will be useful for your scientific work.

Now, one of the most common (and best) uses of shell scripts is for
automating repetitive tasks. Apart from the sheer tediousness of
typing the same commands over and over again, this is exactly the
sort of thing that human beings aren’t very good at: the very fact that
the task is repetitive increases the likelihood we’ll make a mistake (and
not even notice at the time). So it’s much better to write (once) – and
test – a shell script to do it for us. Doing it via a shell script also makes
it easy to reproduce and record what we’ve done, two very important
aspects of any scientific endeavour.

So, the aim of this course is to equip you with the knowledge and skill
you need to write shell scripts that will let you run some program (e.g.
a simulation or data analysis program) over and over again with
different input data and organise the output sensibly.

Version: Lent 2020 33

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 33

Automating repetitive tasks (1)

Imagine I’m working on a program. Every
time I change it, I save it, then compile
and run it. My editor makes a backup
copy of the file, and the compiler
produces one or more files that are of no
interest to me, as well as the executable
that I actually run. At some point I need
to clean up these files.

So, in keeping with this general aim, we’ll start out by
looking at automating a simple sequence of Unix
commands that we might use on a regular basis.

We’ll then build up to doing something more
complicated like running a program that does some
numerical calculations repeatedly with different input
data (parameters).

Version: Lent 2020 34

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 34

Automating repetitive tasks (2)
How do I do this?:

1. Change into my home directory:
$ cd

2. Create a backup directory:
$ mkdir backup

3. Move editor backups from source directory
to backup directory:

$ mv source/*~ backup
$ mv source/*.bak backup

Different editors tend to backup files in different ways.
gedit’s backups have the same name as the original file
with a ~ added to the end of the name (e.g. the backup
of myprog.c would be myprog.c~). Some editors’
backups will have the same name as the original file
with a .bak added to the end of the name. For the sake
of this example, let’s suppose I sometimes use different
editors as the mood takes me so I want to handle
whatever backup files there might be, regardless of
which editor(s) I’ve been using.

Version: Lent 2020 35

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 35

Automating repetitive tasks (3)
4. Delete extraneous compiler files
$ rm source/*.o

If I put those commands together…:
cd
mkdir backup
mv source/*~ backup
mv source/*.bak backup
rm source/*.o

Instead of typing out those commands each time I want
to do this, I could just put them all together…

Version: Lent 2020 36

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 36

Automating repetitive tasks (4)
Let's all make a simple shell script:

$ gedit cleanup-prog-dir &

#!/bin/bash
cd
mkdir backup
mv source/*~ backup
mv source/*.bak backup
rm source/*.o

$ chmod a+x cleanup-prog-dir

…into a very simple shell script. Note that this shell
script is just a linear list of the commands I would type at
the command line in the order I would type them. Now I
can just type:

./cleanup-prog-dir
if I’m in my source directory, or:

~/source/cleanup-prog-dir
if I’m in another directory, instead of all those separate
commands. Simple, really.
(After creating the shell script in gedit (or another editor
of your choice) remember to save it and set the
executable bit on the script using chmod before trying to
run it.)

Version: Lent 2020 37

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 37

Improving my shell script (1)
#!/bin/bash
cd
mkdir –p backup
mv source/*~ backup
mv source/*.bak backup
rm –f source/*.o

Of course, my shell script is very simple, so it gives me errors
if I run it more than once, or if some of the files I want to
handle don’t exist. I can fix some of these errors quite simply:
§ If I use the -p option with mkdir, then it won’t complain if

the backup directory already exists.

§ If I use the -f option with rm, then it won’t complain if
there aren’t any .o files.

Unfortunately, there’s no correspondingly easy way to deal
with mv complaining if there aren’t any files ending in ~
or .bak. We need to know more shell scripting to deal with
that problem.
Note, though, that it doesn’t prevent our shell script from
running, it just gives us some annoying error messages when
we do run it. So our shell script is still perfectly usable, if not
very pretty.
(Remember to save your shell script after making these
changes.)

Version: Lent 2020 38

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 38

Improving my shell script (2)
#!/bin/bash
Change to my home directory
as directories are relative to home
cd
Make backup directory
mkdir –p backup
Move editor backups to backup dir
mv source/*~ backup
mv source/*.bak backup
Delete compiler object files
rm –f source/*.o

One of the most important improvements I can make to even
this simple shell script is to add some documentation, in the
form of comments, to it.
Any line that starts with the hash character (#) is ignored by the
shell. Such lines are called comments, and are used to add
notes, explanations, instructions, etc to shell scripts and
programs.
This is very important, because I may well have forgotten what
this shell script is supposed to do in several months when I
come to use it again. If I’ve put sensible comments in it though,
then it is immediately obvious.
This also makes it easier to debug if I’ve made a mistake: the
comment tells me what the shell script is supposed to be doing
at that point, so if there is a discrepancy between that and what
it actually does when I run it, then it is clear there’s a bug in the
script, probably somewhere around that point.
(Remember to save your shell script after adding the
comments.)

Version: Lent 2020 39

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 39

What is zombie?
When Zombies Attack!

Simulation of an outbreak of a zombie infection
in a closed population

blue = Humans
red = Zombies

Photo: Melbourne Zombie Shuffle by Andrew Braithwaite
Licensed under CC BY 2.0
http://www.flickr.com/photos/bratha/2578784637/

The zombie program uses a variant of the SIR model from epidemiology
to simulate an outbreak of a zombie infection in a closed (i.e. no one
enters or leaves) population. Obviously, since zombies don’t actually
exist, it would be a mistake to try and take this program too seriously. You
should think of zombie as just a program that takes some input on the
command line and then produces some output on the screen and in a file,
and whose output can then be fed to yet other programs for further
processing (as we’ll see later this afternoon).

However, as it happens, the program is based on actual academic
modelling of the spread of disease, as found in Chapter 4 (pp. 133-150) of
Infectious Disease Modelling Research Progress (2009), which is entitled
“When Zombies Attack!: Mathematical Modelling of an Outbreak of Zombie
Infection”, and which you can find here:

http://mysite.science.uottawa.ca/rsmith43/zombies.pdf

And in case you are interested in the book from which that chapter is
taken, the ISBN of Disease Modelling Research Progress is 978-1-60741-
347-9, it’s edited by J. M. Tchuenche & C. Chiyaka and published by Nova
Science Publishers, Inc.

Note that the zombie program writes its output to a file of numbers rather
than producing graphical output. At the end of this afternoon we will see
how to produce graphs of its output.

Version: Lent 2020 40

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 40

Know Your Enemy (1)
$./zombie
Wrong number of arguments!
5 required, 0 found.
Usage: ./zombie zom_death infect resurrect death size

$ ls *zom*
zombie

$./zombie 0.005 0.0175 0.01 0.01 500
When Zombies Attack!: Basic Model of outbreak of zombie infection

Population size: 5.0000e+05
Model run time: 1.0e+01 days

Zombie destruction rate (alpha): 5.000000e-03
Zombie infection rate (beta): 1.750000e-02
Zombie resurrection rate (zeta): 1.000000e-02
Natural death [and birth] rate (delta): 1.000000e-02

Output file: zombie.dat

Model took 6.947398e-02 seconds

The zombie program, which is located in your home
directory, takes 5 numeric arguments: 4 positive floating-
point numbers and 1 positive integer. It always writes its
output to a file called zombie.dat in the current
working directory, and also writes some informational
messages to the screen, which we’ll ignore for now.

zom is a file name glob that means “all the files containing
‘zom’ (in the current directory)”. File name globbing was
covered in the “Unix: Introduction to the Command Line
Interface” course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-unixintro1
The notes from this course are available on-line at:

https://help.uis.cam.ac.uk/help-support/training/
 downloads/course-files/programming-student-files/unix-cli

Please note that the output of the ls command may not exactly match
what is shown on this slide – in particular, the colours may be slightly
different shades.

Version: Lent 2020 41

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 41

Know Your Enemy (2)
$ ls *zom*
zombie zombie.dat running-zombie

$./zombie 0.005 0.0175 0.01 0.01 500
Zombie Attack already running in this directory!

$ rm running-zombie
$./zombie 0.005 0.0175 0.01 0.01 500
When Zombies Attack!: Basic Model of outbreak of zombie infection

Population size: 5.0000e+05
Model run time: 1.0e+01 days

Zombie destruction rate (alpha): 5.000000e-03
Zombie infection rate (beta): 1.750000e-02
Zombie resurrection rate (zeta): 1.000000e-02
Natural death [and birth] rate (delta): 1.000000e-02

Output file: zombie.dat

Model took 6.758285e-02 seconds

Recall that *zom* is a file name glob that means “all the files
containing ‘zom’ (in the current directory)”. Also, once again
please note that the output of the ls command may not exactly
match what is shown on this slide – in particular, the colours
may be slightly different shades.

The zombie program is not as well behaved as we might like:
every time it runs it creates a file called running-zombie in
the current directory, and it will not run if this file is already there
(because it thinks that means it is already running).
Unfortunately, it doesn’t remove this file when it has finished
running, so we have to do it manually if we want to run it
multiple times in the same directory.
Of course, if we run it multiple times in the same directory, we
will overwrite any file called zombie.dat each time. So if we
want to keep the output of each run we’ll need to rename the
zombie.dat file or copy it to somewhere else before we run
the program again.

Version: Lent 2020 42

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 42

Second exercise (1)

We have a program, zombie, that takes
five parameters and produces some
output (on the screen and also in a file).
We want to run it several times with
different parameters, storing the output in
the file from each run.

The zombie program is in your home directory. It is a
program written specially for this course, but this is a
pretty general task you might want to do with many
different programs. Think of zombie as just some
program that takes some input on the command line
and then produces some output in a file, e.g. a scientific
simulation or data analysis program.

Version: Lent 2020 43

Your task is to create a simple shell script that does the above
task. Basically, you want to run the zombie program three times
with a different parameter set each time. Note that only the last
parameter changes between each run, and that is the parameter
we insert into the output file name when we rename it to stop it
being overwritten by the next run.

We have gone through everything you need to do this exercise
(remember the shell script should be very simple, nothing fancy).
You should comment your shell script, preferably as you are
writing it, and you should try to avoid it producing errors if you
can. (However, the important thing is to produce a shell script
that completes the above task, even if it produces some error
messages along the way.)

When you’ve finished this exercise, take a break from the
computer – and I do mean “from the computer” – sitting at a
computer for too long is bad for you! Don’t check your e-mail, get
up, stretch, move around, get something to drink.

Version: Lent 2020 44

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 44

Recap: very simple shell scripts

• Linear lists of commands

• Just the commands you’d type
interactively put into a file

• Simplest shell scripts you’ll write

Version: Lent 2020 45

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 45

Shell Variables
$ VAR="My variable"

$ echo "$VAR"
My variable

$ VAR1="$VAR"
$ VAR="567"

$ echo "$VAR"
567

$ echo "$VAR1"
My variable

We create shell variables by simply assigning them a value
(as above for the shell variables VAR and VAR1). We can
access a the value of a shell variable using the construct
$VARIABLE where VARIABLE is the name of the shell
variable. Note that there are no spaces between the name of
the variable, the equal sign (=) and the variable’s value in
double quotes. This is very important as whitespace (spaces,
tabs, etc) is significant in the names and values of shell
variables.

Also note that although we can assign the value of one shell
variable to another shell variable, e.g. VAR1="$VAR", the two
shell variables are in fact completely separate from each
other, i.e. each shell variable can be changed independently
of the other. Changing the value of one will not affect the
other. VAR1 is not a “pointer” to or an “alias” for VAR.

Version: Lent 2020 46

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 46

Variable Quoting (1)
$ var="This is a variable"

$ echo $var
This is a variable
$ echo "$var"
This is a variable
$ echo ${var}
This is a variable
$ echo $"{var}"
This is a variable

Sometimes you need to quote variables when accessing their contents.
Because the shell treats the variable's contents as a string as if you had typed
it while treating spaces as its way of separating different arguments.

For example, if we have a variable called file:
file="shell scripting for scientists.txt"
Then
ls "$file"
will look for a file called "shell scripting for scientists.txt", whereas
ls $file
will look for files called "shell", "scripting", "for", and "scientists.txt".

The other form of quoting can help with concatenating strings, to delineate
where the variable name ends. For example:
word="foo"
echo $wordbar
Produces no result, whereas:
echo ${word}bar
Produces:
foobar

Version: Lent 2020 47

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 47

Variable Quoting (2)
What happens and why?

$ hello="Hello "

$ echo "${hello}you"

$ echo "$helloyou"

$ echo ${hello}you

$ echo $"{hello}"you

In this course we follow the Google Bash Shell Style Guide's advice on quoting
of variable names.

https://google.github.io/styleguide/shell.xml

Version: Lent 2020 48

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 48

Improving cleanup-prog-dir
#!/bin/bash
Configuration section
programs="$HOME/source"
backups="$HOME/backup"
Change to my home directory
as directories are relative to home
cd
Make backup directory
mkdir –p "$backups"
Move editor backups to backup dir
mv "$programs"/*~ "$backups"
mv "$programs"/*.bak "$backups"
Delete compiler object files
rm –f "$programs"/*.o

I can use shell variables to store (almost) any values I like, much as I can use
variables in a program. I can define my program directory and backup
directory in shell variables, and then use those variables in the rest of my shell
script wherever I would have previously used the corresponding values. This
has the huge advantage that if I want to change the location of my program
directory or backup directory, I only need to do it in one place.
Another advantage is, if I am disciplined and define all my important shell
variables at the start of my shell script, I know immediately, just by looking at
the start of the shell script, what values are important to my shell script. Note
that I’ve used variable names that have some relation to what their values
represent rather than generic variable names like VAR1, VAR2, etc. Using
sensible variable names can be a huge help in figuring out what the shell
script is supposed to do.
Note that I specify my program and backup directories as being subdirectories
of my home directory, which means my script now knows where to find them
regardless of the directory it is operating in. The way I get my my home
directory is by getting the value of the environment variable HOME – more on
environment variables in a moment – using $HOME (exactly the same as I
would for a shell variable called HOME). At the command line we will often use
~ to mean “my home directory”, but, unfortunately, this does not work if the ~
character appears in double quotes.
(Remember to save your shell script after making the changes above.)

Version: Lent 2020 49

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 49

Improving cleanup-prog-dir
#!/bin/bash
Configuration section
programs="$HOME/source"
backups="$HOME/backup"
Make backup directory
mkdir –p "$backups"
Move editor backups to backup dir
mv "$programs"/*~ "$backups"
mv "$programs"/*.bak "$backups"
Delete compiler object files
rm –f "$programs"/*.o

Now delete the following three lines from the shell script:
Change to my home directory
as directories are relative to home
cd
(Remember to save your shell script after deleting the two lines
above.)

We now see another benefit I’ve gotten from improving my script:
because I am now specifying the full path (i.e. a path that starts with /)
rather than a relative path (i.e. a path that depends on which directory
I’m currently in) for my program and backup directories, I no longer
need to change directory to start with. As an added benefit, using a
full path rather than a relative path means I don’t have to worry about
what happens if my script fails to change directory for some reason.
With relative paths, if the script fails to change to the correct directory
to start with, then all the subsequent commands that use relative paths
will try and operate on the wrong files, since the script will be in the
wrong part of the filesystem!

Version: Lent 2020 50

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 50

Environment Variables (1)
$ env
TERM=xterm
SHELL=/bin/bash

·
·
·

$ set
BASH=/bin/bash
BASH_VERSION='4.2.24(1)-release'

·
·
·

$ set | less
BASH=/bin/bash
BASH_VERSION='4.2.24(1)-release'

·
·
·

When used with no arguments, the env command displays the environment variables (and their
values). The environment variables are simply a collection of variables and values that are
passed to a program (including the shell and any shell scripts) when the program starts up.
Typically they contain information that may be used by the program or that may modify its
behaviour. Two environment variables you may have already met are PATH and HOME. PATH
specifies which directories the system should search for executable files when you ask it to
execute a program and don’t give it a path to the executable. HOME is usually set by the system
to the location of the user’s home directory.

The set shell builtin command (when issued with no arguments) displays all the environment
variables, shell variables, various shell parameters and any shell functions that have been
defined. (We’ll be meeting shell parameters in context a little later, which should make clear
what they are, and shell functions are covered on the next day of this course.) Thus set
displays many more variables than the env command.
So many more, in fact, that we probably want to pipe its output through the less command. (The less command
displays its input on the screen one screenful (page) at a time.) Piping is the process whereby the output of one
command is given to another command as input. We tell the shell to do this using the | symbol. So:

set | less
takes the the output of the set shell builtin command and passes it to the less command, which displays it for us
one screen at a time.

Note that the output of env and set may be different from that shown here, and also, since both commands
produce so much output, not all of their output is shown on this slide, as is indicated by the three dots on separate
lines:

·
·
·

Version: Lent 2020 51

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 51

Environment Variables (2)
$ env | grep temp_var
$ temp_var="Temp variable"
$ env | grep temp_var
$ set | grep temp_var
temp_var='Temp variable'
$ export temp_var
$ env | grep temp_var
temp_var=Temp variable

Recall that we create shell variables by simply assigning
them a value (as above for the shell variable temp_var). A
shell variable is not the same as an environment variable
however, as we can see by searching for the shell variable
temp_var in the output of the env command. However, we
have indeed created a shell variable with that name, as we
see by examining the output of the set shell builtin
command.

(The grep command searches for strings of text in other
text. In the example above we are using it to search for the
text “temp_var” in the output of various commands.)

The export shell builtin command adds a shell variable to
the shell’s environment. Once we’ve done this, we see that if
we run the env command we will find the temp_var
variable. It is has become an environment variable.

Version: Lent 2020 52

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 52

Environment Variables (3)
$ export –n temp_var

$ env | grep 'temp_var'

$ set | grep 'temp_var'
temp_var='Temp variable'

$ export foo="Another variable"
$ env | grep 'foo'
foo=Another variable

We can remove a variable from the shell’s environment
by using the export shell builtin command with the -n
option. Note that this does not destroy the variable,
and it remains a shell variable, but is no longer an
environment variable.

Once a shell variable has been added to the shell’s
environment, it remains an environment variable even if
we change its value. Thus we do not have to keep
using the export shell builtin command on a variable
every time we change its value.

We can also set a shell variable and add it to the shell’s
environment all in one go using the export shell builtin
command, as in the above example with the foo
variable.

Version: Lent 2020 53

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 53

Environment Variables (4a)
$ date
Tue 10 Mar 16:17:00 GMT 2020

$ TZ=Europe/Paris
$ date
Tue 10 Mar 16:17:40 GMT 2020

$ TZ=Europe/Paris date
Tue 10 Mar 17:17:20 CET 2020

$ date
Tue 10 Mar 16:17:30 GMT 2020

We can set (or change) an environment variable for just a single
run of a command by setting the variable immediately before the
command on the same line.

Note that the environment variable is added to the environment (or
its value is changed) just for that command. The environment
variables in the shell’s environment remain unaffected by this
change, as we can see in the example above: the TZ variable does
not exist in the shell’s environment, although we set it once for a
particular use of the date command (we can see this by running
the date command again with the same arguments and inspecting
its output).

Version: Lent 2020 54

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 54

Environment Variables (4b)
$ echo "$foo"

$ $ foo="123" env | grep 'foo'
foo=123
$ echo "$foo"

$

To recap: we can set (or change) an environment
variable for just a single run of a command by setting
the variable immediately before the command on the
same line.

As previously mentioned, the environment variable is
added to the environment (or its value is changed) just
for that command. The environment variables in the
shell’s environment remain unaffected by this change,
as we can see in the example above: the foo variable
does not exist in the shell’s environment, although we
set it for the env command (which we can verify by
searching the output of the env command with the
grep command).

Version: Lent 2020 55

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 55

$ rm running-zombie
$./zombie 0.005 0.0175 0.01 0.01 500
When Zombies Attack!: Basic Model of outbreak of zombie infection

Population size: 5.0000e+05
Model run time: 1.0e+01 days

Zombie destruction rate (alpha): 5.000000e-03
Zombie infection rate (beta): 1.750000e-02
Zombie resurrection rate (zeta): 1.000000e-02
Natural death [and birth] rate (delta): 1.000000e-02

Output file: zombie.dat

Model took 7.011294e-02 seconds

Know Your Enemy (3a)

Numbers
in scientific
notation.

By default, all the numbers that the zombie program displays
are in scientific notation (also called standard form). For very
large or very small numbers, scientific notation makes sense,
but for numbers that aren’t very big or very small (like the ones
we are using), it makes less sense, and can be difficult to read.

Is there anything we can do about this?

Note that the output of the zombie program may not exactly match
what is shown on this slide – in particular, the model may take more or
less time to run.

Version: Lent 2020 56

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 56

$ rm running-zombie
$ ZOMBIE_FORMAT=NORMAL ./zombie 0.005 0.0175 0.01 0.01 500

When Zombies Attack!: Basic Model of outbreak of zombie infection

Population size: 500000
Model run time: 10.0 days

Zombie destruction rate (alpha): 0.0050
Zombie infection rate (beta): 0.0175
Zombie resurrection rate (zeta): 0.0100
Natural death [and birth] rate (delta): 0.0100

Output file: zombie.dat

Model took 0.072 seconds

Know Your Enemy (3b)

Numbers
displayed
normally

Like many programs, the way the zombie program behaves can be
affected by the environment variables defined at the time it is run. In
the case of the zombie program, the way in which it displays numbers
on the screen is controlled by the ZOMBIE_FORMAT environment
variable.

If the ZOMBIE_FORMAT environment variable is set to the value:

NORMAL

when the zombie program is run, the numbers it displays on the
screen will not be in scientific notation.

In the example above, we’ve only set this environment variable for a
single run of the zombie program. If we wanted to set it for all future
runs of the zombie program started from this session of the shell then
we need to use the export shell builtin command as follows:

export ZOMBIE_FORMAT=NORMAL

Note that the output of the zombie program may not exactly match what is
shown on this slide – in particular, the model may take more or less time to run.

Version: Lent 2020 57

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 57

Positional parameters

Shell parameters are special variables set by
the shell

§ Positional parameter 0 holds the name of the
shell script

§ Positional parameter 1 holds the first
argument passed to the script

§ Positional parameter 2 holds the second
argument passed to the script, etc

Shell parameters are special variables set by the shell. Many
of them cannot be modified, or cannot be directly modified, by
the user or by a shell script. Amongst the most important
parameters are the positional parameters and the other shell
parameters associated with them.
The positional parameters are set to the arguments that were
given to the shell script when it was started, with the exception
of positional parameter 0, which is set to the name of the shell
script. So, if myscript is a shell script, and I ran it by typing:

./myscript argon hydrogen mercury
then positional parameter 0 = ./myscript

1 = argon
2 = hydrogen
3 = mercury

and all the other positional parameters are not set.

Version: Lent 2020 58

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 58

$@, $#
• @ expands to values of all positional

parameters (starting from 1)
In double quotes each parameter is
treated as a separate word (value)
"$@"

• # expands to the number of positional
parameters (not including 0)
$#

The special parameter @ is set to the value of all the
positional parameters, starting from the first parameter,
passed to the shell script, each value being separated
from the previous one by a space. You access the value
of this parameter using the construct $@. If you access it
in double quotes – as in "$@" – then the shell will treat
each of the positional parameters as a separate word
(which is what you normally want).

The special parameter # is set to the number of positional
parameters not counting positional parameter 0. Thus it
is set to the number of arguments passed to the shell
script, i.e. the number of arguments on the command line
when the shell script was run.

Version: Lent 2020 59

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 59

Shell parameters
§ Positional parameters ($0, $1, etc)
§ Value of all arguments passed: $@
§ Number of arguments: $#
$ cd
$ examples/params 0.5 62 38 hydrogen
This script is /home/y250/examples/params

There are 4 command line arguments.

The first command line argument is: 0.5
The second command line argument is: 62
The third command line argument is: 38

Command line passed to this script: 0.5 62 38 hydrogen

In the examples subdirectory of your home directory there is a
script called params. If you run this script with some command
line arguments it will illustrate how the shell parameters introduced
earlier work. Note that even if you type exactly the command line
on the slide above your output will probably be different as the
script will be in a different place for each user.

The positional parameter 0 is the name of the shell script (it is the
name of the command that was given to execute the shell script).

The positional parameter 1 contains the first argument passed to
the shell script, the positional parameter 2 contains the second
argument passed and so on.

The special parameter # contains the number of arguments that
have been passed to the shell script. The special parameter @
contains all the arguments that have been passed to the shell
script.

Version: Lent 2020 60

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 60

Using positional parameters
File: scripts/run-once
#!/bin/bash
Remove left over running-zombie file
rm –f running-zombie
Run zombie with passed arguments
ZOMBIE_FORMAT="NORMAL" ./zombie "$@"
Rename output file
mv zombie.dat "zombie-$5.dat"
Remove left over running-zombie file
rm –f running-zombie

The file run-once in the scripts directory (shown
above) accepts some command line arguments and then
tries to run the zombie program with them. (Note that it
does no checking whatsoever of the arguments it is given.)
 On the assumption that only the fifth argument will change
between runs, it renames the output file to a new name
based on that argument. Change to your home directory
and try this:

scripts/run-once 0.005 0.0175 0.01 0.01 50

Do an ls of your home directory and see what it has
produced.

Version: Lent 2020 61

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 61

Redirection (>)
Redirect output to a file, overwriting file if

it exists:

command > file

Equivalently:

command 1> file
Redirect standard error to a file, overwriting file if it

exists:

command 2> file

The > operator redirects the output from a command to a file, overwriting
that file if it exists. You place this operator at the end of the command, after
all of its arguments. The place where the output of a command normally
goes is known as “standard output” or “file descriptor 1”. So, we can also
use 1> filename which means “redirect file descriptor 1 (i.e. standard
output) to the file filename, overwriting it if it exists”.

(Unsurprisingly, 2> filename means “redirect file descriptor 2 (standard error) to the file
filename, overwriting it if it exists”. And it will probably come as no shock to learn that
descriptor> filename means “redirect file descriptor descriptor to the file
filename, overwriting it if it exists”, where descriptor is the number of a valid file
descriptor. We’ll meet standard error, also known as file descriptor 2, on the third day of
the course.)

You may think that this “overwriting” behaviour is somewhat undesirable –
you can make the shell refuse to overwrite a file that exists, and instead
return an error, using the set shell builtin command as follows:

set -o noclobber
or, equivalently:

set -C

Version: Lent 2020 62

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 62

Redirection to nowhere
(> /dev/null)

Redirect output to “nowhere” (i.e. the
command’s output is discarded):

command > /dev/null

Equivalently:

command 1> /dev/null

If you don’t want a command’s output for some
reason, then you can discard it by redirecting the
output to a special “device” that is part of the
operating system: /dev/null.
Anything sent to /dev/null is simply thrown away.
This is particularly useful if you have a shell script
where you want to run some commands that produce
output on the screen, but that output would be
confusing or of no interest to the users of you shell
script.

Version: Lent 2020 63

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 63

Using redirection
File: scripts/run-once
#!/bin/bash
Remove left over running-zombie file
rm –f running-zombie
Run zombie with passed arguments
ZOMBIE_FORMAT="NORMAL" ./zombie "$@" > "stdout-$5"
Rename output file
mv zombie.dat "zombie-$5.dat"
Remove left over running-zombie file
rm –f running-zombie

Modify the file run-once in the scripts directory as
shown above (remember to save it when you’ve finished).
Now it captures what the zombie program outputs to the
screen (standard output) as well (hurrah!). Change to
your home directory and try this:

scripts/run-once 0.005 0.0175 0.01 0.01 50

Do another ls of your home directory and see what it has
produced.

Version: Lent 2020 64

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 64

Appending output (>>)
• Redirect output of a command…
• …to a file…
• …appending it to that file

command >> file

The >> operator redirects the output from a command to
a file, appending it to that file. You place this operator
at the end of the command, after all of its arguments. If
the file does not exist, it will be created.

(You can also use 1>> instead of just >>. If you want to
redirect standard error of a command (also known as file
descriptor 2) to a file, appending it to that file, you would use
2>>. (And descriptor>> filename means “redirect file
descriptor descriptor to the file filename, appending to
the file filename”.) Don’t worry if you don’t know what
standard error is – we’ll meet it properly in the third session of
this course; this note here is just for completeness.)

Version: Lent 2020 65

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 65

Keeping a record
File: scripts/run-once
#!/bin/bash
Remove left over running-zombie file
rm –f running-zombie
Write to logfile
echo "" >> logfile
date >> logfile
echo "Running zombie with ${@}" >> logfile
Run zombie with passed arguments
ZOMBIE_FORMAT="NORMAL" ./zombie "$@" > "stdout-$5"
Rename output file
mv zombie.dat "zombie-$5.dat"
Remove left over running-zombie file
rm –f running-zombie
Write to logfile
echo "Output file: zombie-$5.dat" >> logfile
echo "Standard output: stdout-$5" >> logfile

Modify the file run-once in the scripts directory as shown above
(remember to save it when you’ve finished). Now every time it runs it
stores a record of what it is doing in the file logfile in the current
directory. Making your shell scripts keep a record of what they are
doing is an extremely good idea, especially if they are going to run for
a long time or on a remote machine or when you are not around.
Notice that we have something written to the logfile before we start
running the zombie program and something after it is finished. This
means that if the shell script crashes or is stopped before it is finished
there is a very good chance we’ll be able to tell from the log file as it
will not have the “Output file:” or “Standard output:” lines in
it. There are better, more sophisticated ways of checking whether
things have gone wrong, but this is a nice simple one that is well worth
remembering.
Now change to your home directory and try this:

scripts/run-once 0.005 0.0175 0.01 0.01 50
cat logfile

Version: Lent 2020 66

We can repeat a set of commands using a for loop. A
for loop repeats a set of commands once for each
value in a collection of values (strings of characters) it
has been given.

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 66

collection
of values

rest
of script

No

process
value

values
left?

Yes

for
loop

Execute some
commands once
for each value in
a collection of
values

Version: Lent 2020 67

The idea behind the for loop is that the shell script
works its way through the collection of values, one
value at a time, asking if there are any values left to
process. If so, a variable (called the “loop variable”)
gets set to refer to the current value in the collection
and a set of commands is run. Then the question is
asked again and so on. When there are no more
values, the loop finishes and the shell script carries
on. (Of course, if the for loop is at the end of the
shell script, then when the for loop finishes, so will
the shell script.)

The set of commands that the for loop runs for each
value in the collection can be as large or small as we
like, provided that it contains at least one command.

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 67

collection
of values

rest
of script

No

process
value

values
left?

Yes

Create a
collection
of values.

No values left.

Loop
through
values

Still values remaining.
Set the loop variable
to the next value.

Move on

Do something
with the loop
variable.

for
loop

Version: Lent 2020 68

So in the example we’re about to look at we start by
creating a collection of values – the names of the
colours red, green and blue – and putting them in a
shell variable, colours.
We will assign each value in our collection to the loop
variable colour, one at a time.
The action we are going to perform is simply to print
the value of colour. Obviously we could do a lot
more.
Once we’re finished and have left the loop we will
print “End.” just to establish that control has passed
on beyond the loop and that the script hasn’t just
silently aborted.
Note the convention to use a plural variable name for
the collection and singular for the loop variable.

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 68

process
value

collection
of values

rest
of script

No

values
left?

Yes

colours="red green blue"

No values left.

Loop
through
values

Still values remaining.
Set colour
to the next value.

echo "End."

echo "$colour"

for
loop

Version: Lent 2020 69

So how do we build this into a shell script? We use a for loop like this:

for VARIABLE in <collection of values> ; do
<some commands>

done

where <collection of values> is a set of one or more values (strings of
characters) and <some commands> is a list of one or more commands to be executed.

The words “for” and “in”, “do”, “done” and the semi-colon (“;”) are just syntax. The
word immediately after “for” is the name of the loop variable that is going to be used to
track the values in the collection that appears immediately after “in”.
The “ ; do” indicates that we’ve finished giving the collection of values to loop over and
we’re about to start giving the commands we want executed for each iteration of the
loop.
The word “done” indicates that we’ve finished specifying the commands we want
executed for each iteration of the loop.

Note that you can put the do on a separate line, in which case you can omit the semi-
colon (“;”):

for VARIABLE in <collection of values>
do

<some commands>
done

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 69

for VARIABLE in <collection> ; do

Keywords

Loop variable
named

Loop variable
used

<some commands>

done Keyword indicating
end of loop

for

Version: Lent 2020 70

This an example of a for loop. The file is ~/examples/for1

We create a collection of values ("red green blue") and assign it to a shell variable,
colours. Then we tell the loop to create a loop variable (colour) to hold each value in
turn and to loop over the collection of values in colours. We then use the loop variable
in the loop – in this example, we just print out its value (echo "$colour").

Note that our shell script does not explicitly define the shell variable colour anywhere.
This variable is created by the for loop (and persists even after the loop finishes, so we
can see what the last value the loop processed was if we should so wish).

Note also how we don’t put any quotation marks around $colours when we tell our for
loop that this is the collection of values we want it to loop over.

You should now be able to work out what this for loop will do. When you think you know,
run the ~/examples/for1 script and see if you were correct.

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 70

for1
#!/bin/bash
for colour in red green blue ; do
 echo "Colour: $colour"
done
echo "End."

$ cd
$ examples/for1

Version: Lent 2020 71

What happens if we do put double quotation marks
around $colours?

If we put double quotation marks around
$colours it is regarded as a single value (“red
green blue”) rather than as 3 separate values
(“red”, “green” and “blue”).

You should now be able to work out what the for
loop above will do. When you think you know, run
the ~/examples/for1a script and see if you were
correct.

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 68

for1
#!/bin/bash
colours="red green blue"
for colour in ${colours} ; do
 echo "${colour}"
done
echo "End."

$ cd
$ examples/for1

Version: Lent 2020 72

There’s another common place where we might get
collections of values for our for loops: from shell
parameters.

We can also use a shell parameter as the source of the
collection of values for our for loop. A very common
example of this is to use the special parameter @ to loop
through the arguments that were passed to the shell script.
Note that if we use @ for a for loop, we’ll almost always
want to surround it in quotation marks, i.e. "${@}", so that
we loop over each of the individual arguments separately.

You should now be able to work out what the for loop
above will do. When you think you know, run the for1b
shell script in the examples directory of your home
directory as shown on the slide and see if you were correct.
 If there is anything you do not understand in the shell
script shown above, please ask the course giver or a
demonstrator now.

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 72

"$@"for item in ; do

done

item}"echo "${

echo "End."

for1b

$ cd
$ examples/for1b red green blue

Version: Lent 2020 73

So where can we get collections of values for our for loops?

Probably the most common way to specify a collection of values for a for
loop is to use a shell variable (or environment variable), either one we’ve
created ourselves, or one which something else has created for us. Note that
in such cases we normally would not surround the ${} with quotation marks.
(For the curious: LS_OPTIONS (used as an example on the slide above) is an environment
variable that may be used to control the behaviour of the ls command on some systems.)

As we have seen, we can also use a shell parameter, most notably the special
parameter @ to loop through the arguments that were passed to the shell
script. Note that if we use @ for a for loop, we’ll almost always want to
surround it in quotation marks, i.e. "${@}", so that we loop over each of the
individual arguments separately.

We can also just give the collection of values to the for loop directly, by
specifying them after the in keyword, one after the other, separated by one or
more spaces, e.g.

for colour in "red" "green" "blue" ; do
echo "${colour}"

done

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 73

collection
of values

Where can
these come
from?

Values for for loops

From a shell variable (or environment variable) or
shell parameter:

for item in $items ; do

for opt in $LS_OPTIONS ; do

for argument in "$@" ; do

…or specify them directly:

for colour in "red" "green" "blue" ; do

Version: Lent 2020 74

Where else can we get collections of values for our for loops?

Another extremely common way of getting collections of values for
a for loop is to use a wildcard or file name glob to specify one or
more files in a directory. For example, *.dat means all the files
ending in .dat in the current directory. zombie?.dat means all
the files with names like zombie1.dat, zombie2.dat, etc.
(basically all files whose name starts with zombie, followed by a
single character and finishing in .dat) in the current directory.
(You can also tell the shell to look in a particular directory for
matching files by preceding the file name glob with the path of the
directory, e.g. /tmp/* means all the files in the /tmp directory.)

File name globbing was covered in the “Unix: Introduction to the
Command Line Interface” course, see:

https://www.training.cam.ac.uk/ucs/course/ucs-unixintro1
The notes from this course are available on-line at:

https://help.uis.cam.ac.uk/help-support/training/
downloads/course-files/programming-student-files/unix-cli

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 74

collection
of values

Where can
these come
from?

More values for for
loops

…or from a file name glob or wildcard:

for file in *.dat ; do

for file in zombie?.dat ; do

Version: Lent 2020 75

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 75

for2
Execute some commands once for each value in a

collection of values
for VARIABLE in <collection of values> ; do

<some commands>
done

File: examples/for2
colours="red green blue"
for colour in $colours ; do
 echo "Colour: $colour"
done

for file in * ; do
 ls -l "$file"
done

To summarise: we can repeat a set of commands using a for loop. A for loop repeats
a set of commands once for each value in a collection of values it has been given. We
use a for loop like this:

for VARIABLE in <collection of values> ; do
<some commands>

done
where <collection of values> is a set of one or more values (strings of
characters). Each time the for loop is executed the shell variable VARIABLE is set to
the next value in <collection of values>. The two most common ways of
specifying this set of values is by putting them in a another shell variable and then using
the ${} construct to get its value (note that this should not be in quotation marks), or by
using a wildcard or file name glob (e.g. *) to specify a collection of file names (this is
known as pathname expansion). <some commands> is a list of one or more commands
to be executed.

Note that you can put the do on a separate line, in which case you can omit the semi-
colon (;):

for VARIABLE in <collection of values>
do

<some commands>
done

There are some examples of how to use it in the for1 and for2 scripts in the
examples directory of your home directory. Note that one for loop can contain another
for loop (the technical term for this is nesting).

Version: Lent 2020 76

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 76

Multiple runs
File: scripts/multi-run
#!/bin/bash

Parameters that stay the same each run
fixed_parameters="0.005 0.0175 0.01 0.01"

Run zombie program once for each argument
Note: *no* quotes around $fixed_parameters
or they'll be interpreted as one argument!
...but remember $@ is special and needs the quotes!
for population in "$@" ; do
 "$HOME/scripts/run-once" $fixed_parameters \
 "$population"
done

$ cd
$ rm –f *.dat stdout-* logfile
$ scripts/multi-run 50 100 500 1000 3000 5000 10000 50000

The file multi-run in the scripts directory (shown above) takes one or more
command line arguments and then runs the run-once script (which in turn runs
the zombie program) with 5 arguments – 4 that are always the same and that
are hard-coded into the script, and one of its command line arguments. It does
this repeatedly until there are no more of its command line arguments. This
script is much more versatile than the script we wrote for the earlier exercise.
Modifying that script for each different set of values we might want to run would
have rapidly become extremely tedious, whereas we don’t need to modify this
script at all – we just run it with different arguments.
Note that when we use the value of the shell variable fixed_parameters we
don’t surround it with quotes – if we did then it would be treated as a single value
instead of as 4 separate values (when the shell treats spaces in this way – as a
separator between values – it is called word splitting).
Give it a try – change to your home directory and type the following commands
(the rm command is to remove the files produced by our previous runs of earlier
scripts):

rm –f *.dat stdout-* logfile
scripts/multi-run 50 100 500 1000 3000 5000 10000 50000
less logfile

And finally do a ls of your home directory and see what files have been
produced.

Version: Lent 2020 77

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 77

If you’re not coming back:
Give us Feedback!

If, and only if, you will not be attending any
of the next three days of the course then
please make sure that you fill in the
Course Review form online, accessible
under “feedback” on the main MCS Linux
menu, or via:

http://feedback.training.cam.ac.uk/uis/

If you are coming to further sessions of this
course, then you should fill in the feedback
form at the last session you attend.

Version: Lent 2020 78

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 78

Final exercise (1)

We have a directory that contains the output
of several runs of the zombie program in
separate files. We have a file of commands
that will turn the output into a graph (using
gnuplot). We want to turn the output from
each run into a graph.

In this particular case, we happen to be specifically using the
gnuplot program and the output of the zombie program
we’ve met before. (gnuplot is a program that creates
graphs, histograms, etc from numeric data.) Think of this task
as basically: I have some data sets and I want to process them
all in the same way. My processing might produce graphical
output, as here, or it might produce more data in some other
format.

If you haven’t met gnuplot before, you may wish to look at its
WWW page:

http://www.gnuplot.info/

If you think you might want to use the gnuplot program for
creating your own graphs, then you may find the “Introduction
to Gnuplot” course of interest – the course notes are on-line at:

https://www-uxsup.csx.cam.ac.uk/courses/moved.Gnuplot/

Version: Lent 2020 79

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 79

Let’s take a closer look… (1)
$ cd
$ cp gnuplot/zombie.gplt .
$ cp zombie-500.dat zombie.dat

$ ls zombie.png
/bin/ls: zombie.png: No such file or directory

$ gnuplot zombie.gplt
$ rm zombie.dat
$ ls zombie.png
zombie.png

$ eog zombie.png &

If you don’t already have an zombie-500.dat file,
do the following before trying the commands above:

cd
scripts/multi-run 500

Note that the output of “ls zombie.png” may look slightly
different – in particular, the colours may be slightly different
shades.

Version: Lent 2020 80

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 80

Let’s take a closer look… (2)

Version: Lent 2020 81

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 81

Final exercise (2)
What we want to do is, for each output file:

1. Rename (or copy) the output file we want to
process to zombie.dat

$ mv zombie-500.dat zombie.dat

2. Run gnuplot with the zombie.gplt file
$ gnuplot zombie.gplt

3. Rename (or delete if you copied the original output
file) zombie.dat

$ mv zombie.dat zombie-500.dat

4. Rename zombie.png
$ mv zombie.png zombie-500.dat.png

Your task is to create a shell script that does the above task.
Basically, for each of the .dat files we’ve just produced, you want to
run gnuplot on it to create a graph (which will be stored as a .png
file). The zombie.gplt file you’ve been given will only work if
the .dat file is called zombie.dat and is in the current directory.
Also, you don’t want gnuplot to overwrite each .png file, so you’ll
need to rename it after gnuplot’s created it.

If you don’t already have a directory of several .dat files, do the
following before starting the exercise:

cd
scripts/multi-run 50 100 500 1000 3000 5000 10000 50000

We have gone through everything you need to do this exercise. You
should comment your shell script, preferably as you are writing it.

Hint: the best way to do this is with a for loop over all the .dat files in the directory – we haven’t used that kind
of for loop much yet, but you’ve seen the syntax for it, and there is an example of that sort of for loop in the
for2 file in the examples directory.

Version: Lent 2020 82

scientific-computing@uis.cam.ac.uk Simple Shell Scripting for Scientists: Day One 82

Final exercise – Files

All the files (scripts, zombie program etc)
used in this course are available on-line at:

https://help.uis.cam.ac.uk/
help-support/training/downloads/

course-files/programming-student-files/
shellscriptingsci/shellscripting-files/

exercises/day-one

We’ll be looking at the answers to this
exercise on the next day of this course, so
please make sure you have attempted this
exercise before you come to the next day of
this course.

Also, if you are doing this course in one of
our scheduled classes (as opposed to
reading these course notes on-line, for
example), then you should have received a
user ID to use for the course: it will probably
be something like yXXX (where XXX is a
number). Make sure you make a note of
this user ID and bring it with you to the next
session of the course.

