

Welcome

Course Title:Relational Database DesignEmail:service-desk@ucs.cam.ac.uk

Topics covered

- Entity-Relationship Diagrams
 - Tables and Fields
 - Keys and Joins
 - A practical understanding of normalisation

Lesson Objectives

By the end of this session you will be able to:

- ✓ Define: database, table, field
- ✓ Explain join types 1:1, 1:n, m:n
- ✓ Apply Primary and Foreign keys to tables
- ✓ Draw an ERD for a given scenario

Ask questions at any time please!

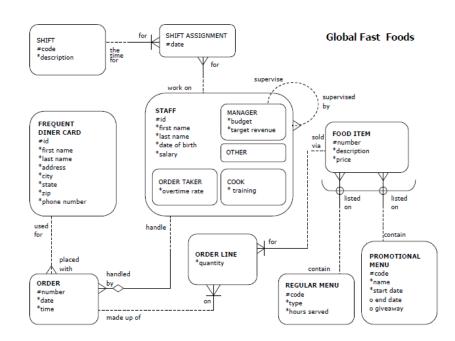
What is a database?

4	EmpNo 👻	FirstName 👻	LastName 👻	Department +	PhoneNo 🔻	Started 🚽	DateOfBirth 👻	FullTime 🕞	WeeklyHou 👻
Œ	101	Julianne	Kerr	Executive	60001	28/06/1999	05/02/1960	V	40
Ŧ	102	Harry	Jones	Executive	60002	19/07/1999	13/04/1965	V	40
Ŧ	103	Angel	Harrington	Executive	60003	19/07/1999	19/08/1958	~	40
(±	104	Peter	Dawson	Executive	60004	19/07/1999	12/07/1954	~	40
(±	105	Mark	Jones	Executive	60005	19/07/1999	06/08/1963	~	40
(±	106	Maureen	Grayson	Administratior	61021	06/09/1999	23/10/1974	~	40
E	107	Augustine	Millson	Administratior		06/09/1999	07/12/1978	~	40
Ŧ	108	Amanda	Bennet	Administratior		06/09/1999	04/05/1959	\checkmark	40
(±	109	George	Samuelson	Administratior		06/09/1999	01/12/1987	~	40
Ŧ	110	Neville	Smith	Administration		06/09/1999	07/08/1954	~	40
Œ	111	Petra	Henricks	Administratior		06/09/1999	03/04/1981	~	40
Ŧ	112	Vivienne	Clark	Administration		06/09/1999	22/11/1961	~	40
Ŧ	113	Jerry	Hancock	Administratior		06/09/1999	09/10/1975	~	40
Ŧ	114	Victor	Brown	Administration	61001	06/09/1999	02/04/1973	~	40
Œ	115	Sandra	Kendall	Administratior	61002	06/09/1999	06/11/1978	~	40
E	116	Nellie	Adams	Administration	61003	06/09/1999	17/04/1954	~	40
Œ	117	Charles	Morris	Administration	61004	06/09/1999	20/12/1977	~	40
E	118	Lance	Williams	Administration	61005	06/09/1999	03/05/1975	~	40
E	119	Antony	De Rozario	Sales & Market	63010	02/12/1999	15/08/1968	~	40
(±	120	Belinda	Moore	Sales & Market	63034	03/01/2000	04/12/1982	V	40
Ŧ	121	Bryan	Fox	Sales & Market	63011	02/12/1999	10/08/1976		40
	122	David	Glens	Sales & Market	63006	27/11/1999	05/07/1985		40
Ŧ	123	Eileen	Reilly	Sales & Market	63012	02/12/1999	12/04/1983		40
	rd: 1 of 105	The day	lo Filter Search	C-L 0 0 0		00/10/1000	25/05/1064		

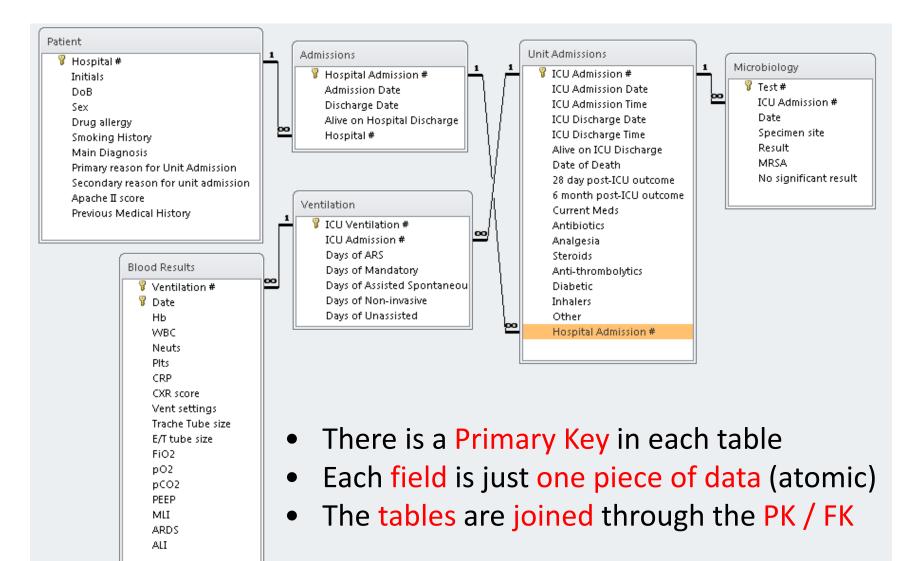
A database is a **centralised** and **structured set of data** stored on a computer system

It provides facilities for adding, modifying and deleting the data when required

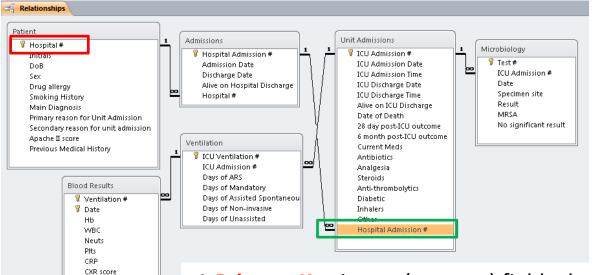
It also provides facilities for transforming queried data into useful information


RDB Development Overview

- Understand the requirements:
 What data do you want to store?
 What information do you want to retrieve?
- 2 Produce an entity relationship diagram
- Implement in software, e.g:
 Access (Up to 2 GB max size)
 MySQL (2TB max)
 PostGres (unlimited size)
 Oracle (unlimited size)
 etc.


Entity Relationship Design Process

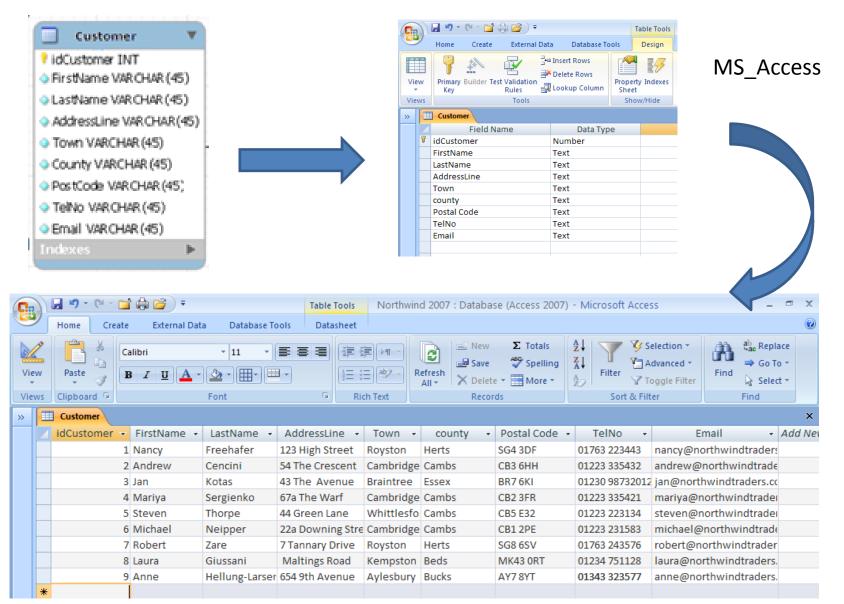
Step 1 – Identify the data


- Step 2 Group the data into tables and allocate a primary key for each table
- Step 3 Join the tables using PK to FK

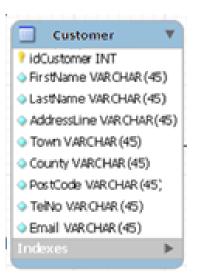
Tables (entities) hold groups of fields (attributes)

What are Primary and Foreign Keys?

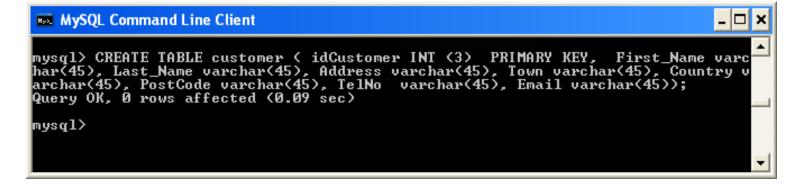
Vent settings Trache Tube size E/T tube size


FiO2 pO2 pCO2

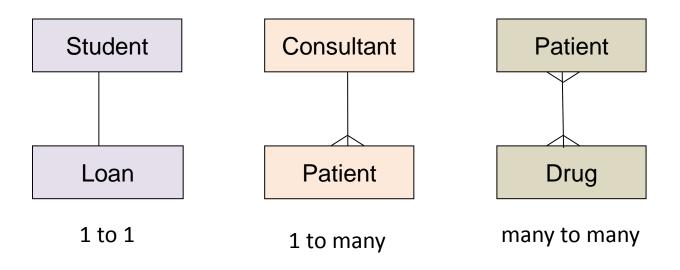
PEEP MLI ARDS ALI A **Primary Key** is one (or more) fields that uniquely identify a record Your staff or student ID is unique to you, this is the PK field in your record at the University


A Foreign Key is an field that holds the value of a primary key of another table

Common fields are used to join tables joins are either PK to FK (1:n) or PK to PK (1:1)


How Does the ERD relate to the Implementation?

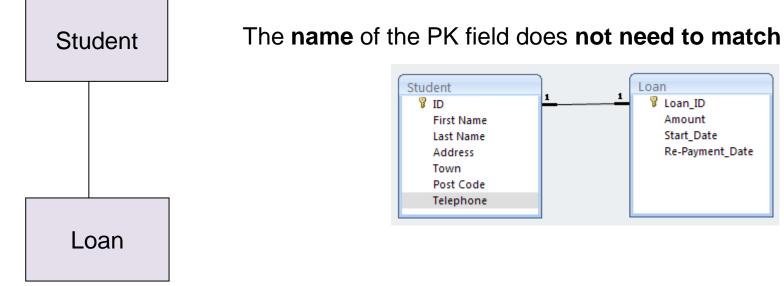
... or in MySQL



CREATE TABLE customer idCustomer INT (3) PRIMARY KEY, First Name varchar(45), Last Name varchar(45), Address varchar(45), Town varchar(45), Country varchar(45), PostCode varchar(45), TelNo varchar(45), Email varchar(45));

Going back to Join Types

Relationships are drawn with a single end (1) or a crow's foot (many):



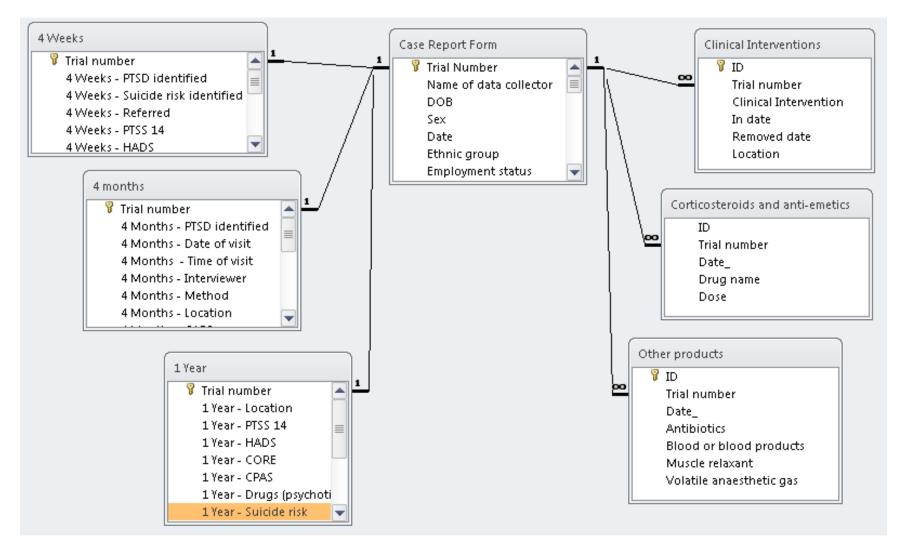
Each Student has one Loan Each Loan is allocated to one Student

Each Consultant has many Patients Each Patient is allocated to one Consultant

Each Patient may be prescribed many Drugs Each Drug may be prescribed to many Patients

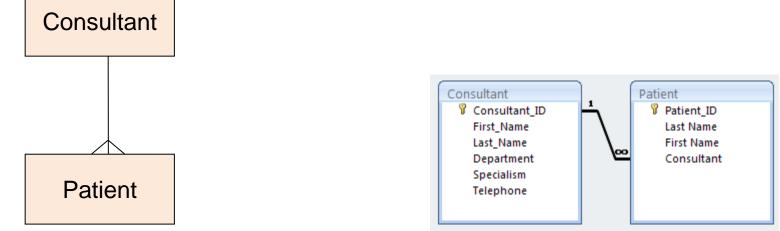
One to one (1:1)

Each Student has one Loan

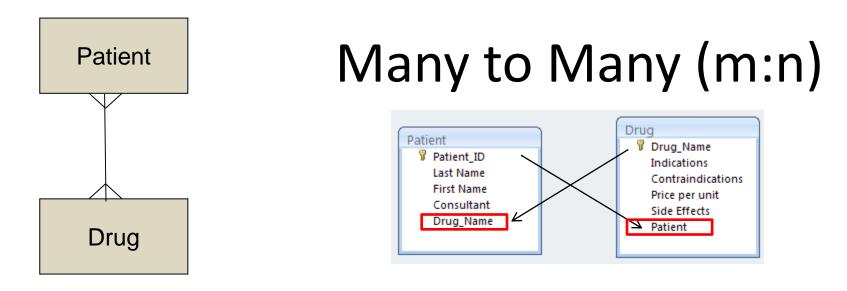

Each Loan is allocated to one Student

E Student							Loan			
10	🝷 First Name 👻	Last Name 🕞	Address 👻	Town 🗸	Post Code 🕞	Telephone 👻	Loan ID 🔹	Amount -	Start_Date 👻	Re-Payment -
	€ Joe	Baker	33 Kings Ride		SG9 2DE	01763 243321	± JB_002	£4,500.00	19/11/2009	18/11/2010
	Sarah	Smith	23 Fair Valley	Stevenage	SG2 4HJ	01438 432344	± SS 001	£3,000.00	01/09/2009	19/11/2010
						_ /	_			

Each PK is unique in each table and the PK values must match in both tables.


Example usage for 1:1

A 'Case Report' patient takes each survey once over a period of time



Each Consultant has many Patients

Each Patient is allocated to one Consultant

Consultant			
Consultant	✓ First Name ✓	Last Name 🔻	Depa
HSG 1998	Harry	George	Medi
JBS 1955	John	Berryman	Obste
192_1999	JUIII	berryman	Obste

Each Consultant appears once in Consultant but many times in Patient

Each Patient may be prescribed many Drugs

1 Bedecs Anna JBS_1955 Aspirin, Ferrous State 2 Gratacos Solsona Antonio JBS_1955 Aspirin 3 Axen Thomas JBS_1955 Ferrous Sulphate, 4 Lee Christina HSG_1998 Ferrous Sulphate	
4 Lee Christina HSG_1998 Ferrous Sulphate	transactions
5 O/Desmall Martin 100 1055 Semana Sulabata	
5 O'Donnell Martin JBS_1955 Ferrous Sulphate	
6 Pérez-Olaeta Francisco HSG_1998 Aspirin	

Drug						
Drug_Name 🕞	Indications 👻	Contraindications 🕞	Price per unit 🕞	Side Effects	Patient	-
Aspirin	Fever	Allergic to Ibuprofen	£0.01	Bleeding	1, 2, 3, 6	
Ferrous Sulphate	Anaemia	Hypersensitivity	£0.02	Nausea	1, 3, 4, 5	

Many to Many (m:n)

Always de-compose **m:n** relationships into **1:n** relationships because:

It is impossible to enforce referential integrity on m:n joins They can cause duplicated data (redundancy) Insert, update and delete operations are very tricky! They can cause more than one data item in each field – called a **repeating group**

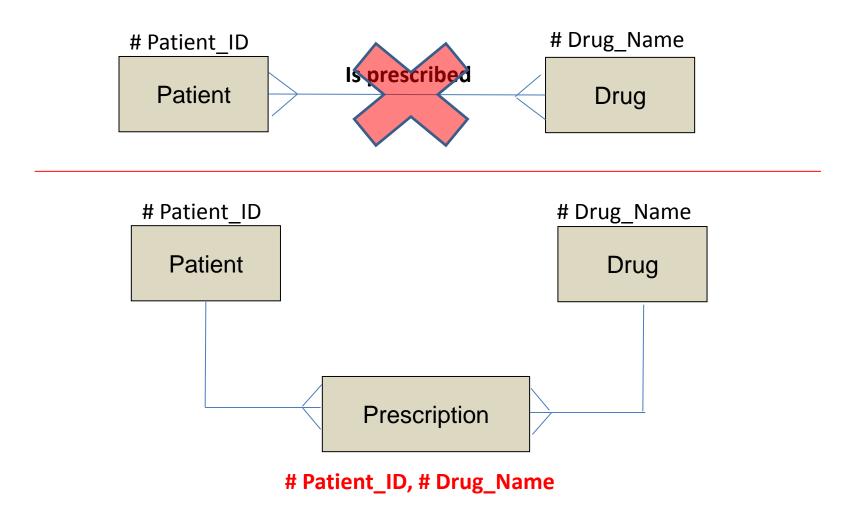
Patient				
Patient -	Last Name 🛛 👻	First Name 👻	Consultant 👻	Drug_Name 👻
1	Bedecs	Anna	JBS_1955	Aspirin, Ferrous Sulphate
2	Gratacos Solsona	Antonio	JBS_1955	Aspirin
3	Axen	Thomas	JBS_1955	Ferrous Sulphate, Aspirin
4	Lee	Christina	HSG_1998	Ferrous Sulphate
5	O'Donnell	Martin	JBS_1955	Ferrous Sulphate
6	Pérez-Olaeta	Francisco	HSG_1998	Aspirin

Drug					
Drug_Name 🕞	Indications 👻	Contraindications -	Price per unit 🕞	Side Effects 🕞	Patient 🝷
Aspirin	Fever	Allergic to Ibuprofen	£0.01	Bleeding	1, 2, 3, 6 🗸
Ferrous Sulphate	Anaemia	Hypersensitivity	£0.02	Nausea	1, 3, 4, 5

Patient 1 is prescribed 2 drugs

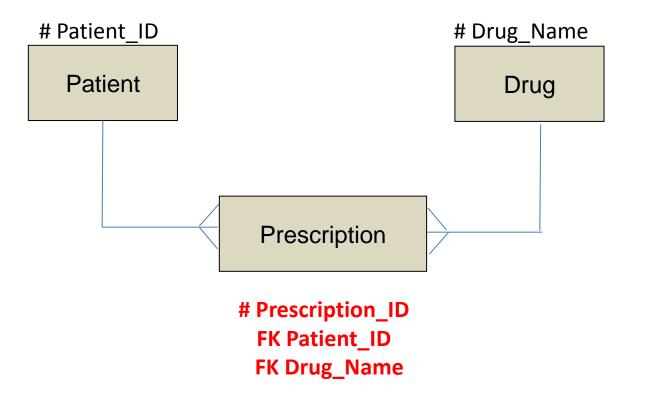
Aspirin is prescribed to Patients 1, 2, 3, 6

An example of data redundancy:


The repeating group has been resolved but at a cost!

ſ	11	Patient					
		Patient 👻	Last Name 🛛 🚽	F	First Name 👻	Consultant 👻	Drug_Name 🚽
		1	Bedecs	А	Anna	JBS_1955	Aspirin, Ferrous Sulphate

Also consider implications for the PK


Copy Of	Patier	nt			
Patient_I	D⊸t	Last Name 🕞	First Name 👻	Consultant 👻	Drug_Name 🕞
	1	Bedecs	Anna	JBS_1955	Ferrous_Sulphate
	1	Bedecs	Anna	JBS_1955	Aspirin
	2	Gratacos Solsona	Antonio	JBS_1955	Aspirin
	3	Axen	Thomas	JBS_1955	Ferrous_Sulphate
	3	Axen	Thomas	JBS 1955	Aspirin
	4	Lee	Christina	HSG_1998	Ferrous_Sulphate
	5	O'Donnell	Martin	JBS_1955	Ferrous_Sulphate
	6	Pérez-Olaeta	Francisco	HSG_1998	Aspirin

A simple rule for de-composing Many to Many Joins

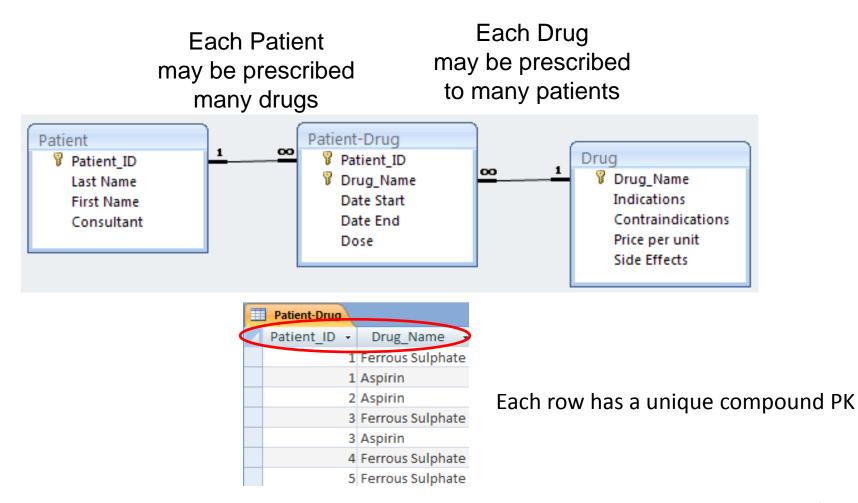
Compound Keys are unique PKs using more than one field

A simple rule for de-composing Many to Many joins

A simple ID number is an alternative for the PK of Prescription Now Patient_ID and Drug_Name are FKs

Task: Use the worksheet to de-compose the m:n joins Illustrate both methods

Compound Keys work like this . . .


Patient_ID, # Drug_Name

Patient-Drug		
Patient ID 👻	Drug Name 👻	Date Start 🕞
	Ferrous Sulphate	01/11/2009
	Aspirin	01/11/2009
2	Aspirin	01/10/2009
3	Ferrous Sulphate	19/11/2009
3	Aspirin	19/11/2009
4	Ferrous Sulphate	02/09/2009
5	Ferrous Sulphate	13/11/2009

The values of Patient_ID '1' and Drug_Name 'Ferrous Sulphate' cannot be entered in another row in this table

A patient has a row for each drug they are prescribed

When implemented, the resolved m:n looks like this . . .

1st Normal Form:

Each field must hold only one piece of data (relevant to the PK)

2nd Normal Form:

Each non PK field is relevant to the whole PK (when PK is compound)

3rd normal Form:

Check for potential PKs in the non PK fields (avoid dependencies)

Dependencies

S	T(D	R	E

Store ID Name Address Line City County Post code Country Phone number Comments If I know the **#** StoreID then I know the Name, Address Line, City, County, Post Code, Country, Phone no, Comments

Name is dependent on Store ID

Address line is dependent on Store ID

City is dependent on Store ID

and so on . . .

Remember:

1NF: Each non key field must be one data item related (i.e. 'dependent') on the PK

1st Normal Form: Each field must hold only one piece of data (relevant to the PK)

Table design for the business rule 'Stores are our customers'

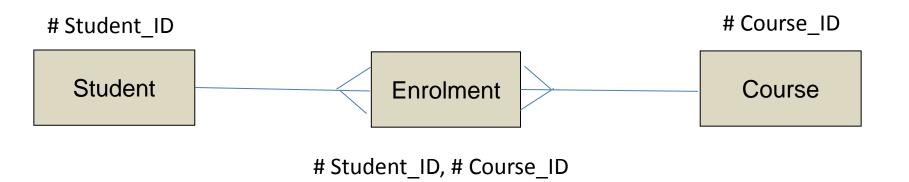
Not good 'Address' holds more than one piece of data

STORE
Store ID
Name
Address Line
City
County
Post code
Country
Phone number
Comments

Another example of the violation of 1NF

Drug					
Drug_Name 🕞	Indications 👻	Contraindications 🕞	Price per unit 🕞	Side Effects 🕞	Patient 👻
Aspirin	Fever	Allergic to Ibuprofen	£0.01	Bleeding	1, 2, 3, 6
Ferrous Sulphate	Anaemia	Hypersensitivity	£0.02	Nausea	1, 3, 4, 5

This is called a 'repeating group' The cell is storing more than one fact


1st Normal Form:

Each field must hold only one piece of data (relevant to the PK)

2nd Normal Form:

Each non PK field is relevant to the **whole PK** (when PK is compound)

Only consider 2NF when you have a compound key

Enrolment(# Student_ID, # Course_ID, DateOfEnrolment, StudentName, CourseName)

Which non key fields are NOT fully dependent on the compound key?

Third Normal Form

3NF: Check for potential PKs in the non PK fields (avoid dependencies)

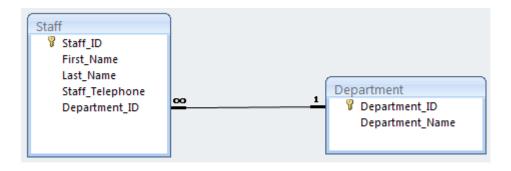
DEPARTMENT

Department ID
Department_Name
Staff_ID
First_Name
Last_Name
Staff_Telephone

Suppose we wanted to track Staff who work in **Departments** . . .

		Department					
		Department_ID 🚽	Department_Name 🕞	Staff_ID 🕞	First_Name -	Last_Name 👻	Staff_Telepl •
		1	Accounts	JS1029	John	Smith	01223 343233
		2	Accounts	GW323	Gillian	White	01223 344332
		3	Accounts	KH342	Kirsty	Harison	01223 241564
÷	*	(New)					

Can you see any problems?


Violation of 3NF

Tables that are not in 3NF cause insert, update and delete anomalies:

- **Insert**: What if a new department is created but no staff are allocated?
- **Update**: What if the accounts department changed its Department_ID?
- **Delete:** What if a department was deleted?

To resolve into correct 3NF, split the table Leave a copy of the Department_ID in Staff to make the join

Staff					
Staff_ID 👻	First_Name 🝷	Last_Name 👻	Staff_Telepl +	Department_ID) 🚽
JS1029	John	Smith	01223 343233		1
GW323	Gillian	White	01223 344332		1
KH342	Kirsty	White	01223 241564		1
SH567	Shiela	Hamilton	01223 323476		2
PH987	Pamela	Harding	01223 225678		2
TD098	Thomas	Danks	01223 247897		3

Many Staff to each Department

] [Department		
	Department_ID		Department_Name 🝷
+		1	Accounts
÷		2	HR
+		3	Stock

This may look like redundancy but it is not. This is a FK field and makes the link between Department and Staff tables.

A worked example

Developing an ERD from a business scenario

Step 1 – Identify the data
Step 2 – Group the data into tables and allocate a primary key for each table
Step 3 – Join the tables using PK to FK

Step 1 – Identify the data

Highlight the words that will be stored as data

From this narrative description identify the data to be stored :

"I'm a manager of the S**porting-Goods Wholesale Company** that operates worldwide to fill orders from retail sporting-goods stores. The stores are our customers. For each customer, we must track an ID and a name. We may track an address including the city, county, post code, country and phone number.

We need to record information about our stock including ID, description, price, amount in stock. We hold stock in warehouses to best fill the orders of our customers. For each order, we must track an ID. We track the date ordered, date shipped, and payment type when the information is available.

Each warehouse must have an ID for which we track an address including the city, county, post code, country and phone number.

Departments are responsible for placing and tracking the orders when our customers call. For each department, we must track the ID and name. We may also record general comments about a customer."

Table or Field?

"I'm a manager of the **Sporting-Goods Wholesale Company** that operates worldwide to fill orders from retail sporting-goods stores. The **stores** are our customers. For each customer, we must track an **ID** and a **name**. We may track an **address** including the **city**, **county**, **post code**, **country** and **phone number**.

We need to record information about our **stock** including **ID**, **description**, **price**, **amount in stock**. We hold stock in **warehouses** to best fill the **orders** of our customers. For each order, we must track an **ID**. We track the **date ordered**, **date shipped**, and **payment type** when the information is available.

Each warehouse must have an **ID** for which we track an **address** including the **city, county, post code, country** and **phone number**.

Departments are responsible for placing and tracking the orders when our customers call. For each department, we must track the **ID** and **name**. We may also record general **comments** about a customer."

Step 2a – Group the fields into tables ensure data is split into single data items

STORE

Store ID Name Address Line City County Post code Country Phone number

Comments

ORDER

Order ID Date ordered Date shipped Payment type

WAREHOUSE

Warehouse ID Address Line City County Post code Country Phone number

STOCK

Stock ID Description Price Amount in stock

DEPARTMENT Department ID Name

Each field is listed **ONCE** (unless involved in a PK to FK join) **and** is in the correct table

Step 2b – allocate a PK for each table

STORE

Store ID Name Address City County Post code Country Phone number Comments

ORDER

Order IDDate orderedDate shippedPayment type

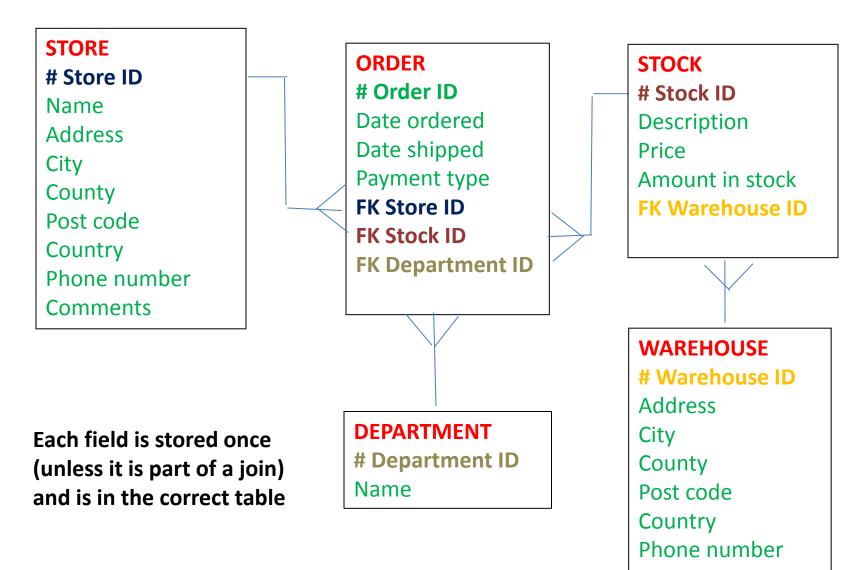
STOCK # Stock ID Description Price Amount in stock

WAREHOUSE # Warehouse ID Address City County Post code Country Phone number

DEPARTMENT # Department ID Name

Identifying relationships (joins)

find out the **rules** of the database – understand what you are trying to model


"I'm a manager of the **Sporting-Goods Wholesale Company** that operates worldwide to fill orders from retail sporting-goods stores. The stores are our customers. For each customer, we must track an ID and a name. We may track an address including the city, county, post code, country and phone number.

We need to record information about our stock including ID, description, price, amount in stock. We hold stock in warehouses to best fill the orders of our customers. For each order, we must track an ID. We track the date ordered, date shipped, and payment type when the information is available. (Stock is in an order)

Each warehouse must have an ID for which we track an address including the city, county, post code, country and phone number.

Departments are responsible for placing and tracking the **orders** when our customers call. For each department, we must track the ID and name. We may also record general comments about a customer."

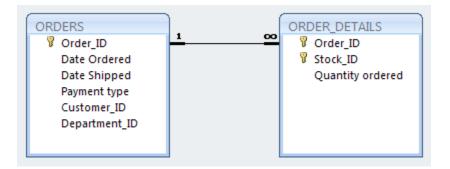
Step 3 – Join the tables using PK to FK

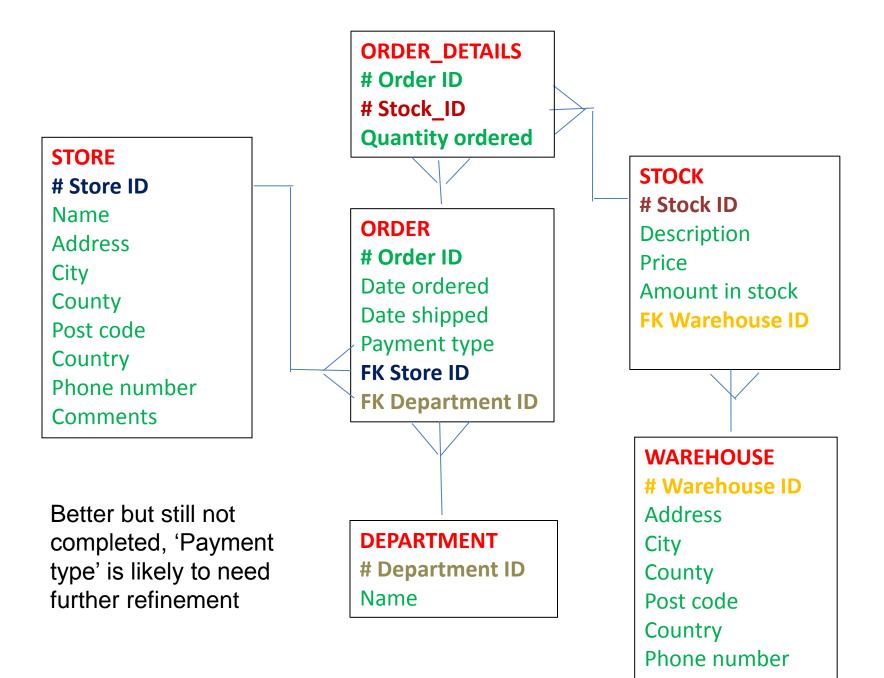
The ERD is not quite there, but OK for a 1st draft

ORDER # Order ID Date ordered Date shipped Payment type FK Store ID FK Stock ID FK Department ID

This table needs further refinement, can you see why?

Task: Complete the occurrence table with dummy data. Add three items into one order. Can you identify the problem? Because the customer orders more than one stock item (repeating group) this is causing data redundancy.


E	ORDER						
	Order_ID 👻	Date Ordered 🕞	Date Shipped 🕞	Payment type 🕞	Customer_ID 👻	Stock_ID 👻	Department_ID 👻
	1	27/02/2010	28/02/2010	Visa card	28342	99999	1
	2	27/02/2010	28/02/2010	Visa card	28342	55555	1
	3	27/02/2010	28/02/2010	Visa card	28342	33333	1
×	•						


Each stock item ordered requires a new row and a unique PK, the table is not in 1NF

ſ		ORDERS					
	4	Order_ID 👻	Date Ordered 🕞	Date Shipped 🕞	Payment type 🕞	Customer_ID 👻	Department_ID 👻
		1	27/02/2010	28/02/2010	Visa card	28342	1

ORDER_DETA	ILS	•			
Order_ID	Ŧ	Stock_ID	Ŧ	Quantity ordered	Ŧ
	1	99999			2
	1	55555			1
	1	33333			4

Remove the Stock_ID field from the ORDER table Place it into its own table Take a copy of the ORDER_ID to make the join now a 1:n between ORDERS and ORDER_DETAILS Adding 'Quantity Ordered' is a good idea too!

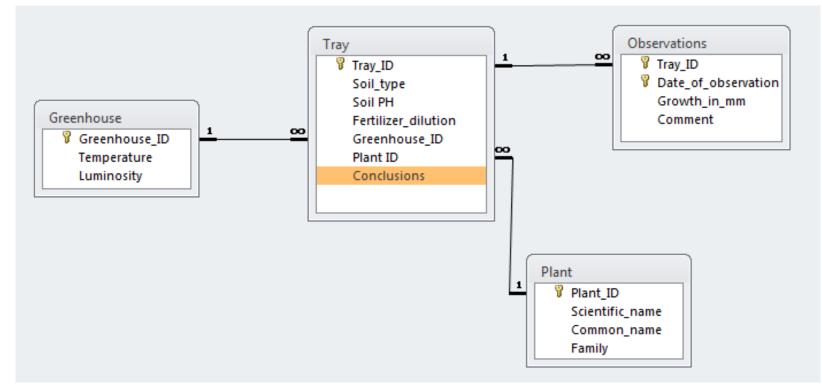
A horticultural research company is conducting a study of different plants grown using a new fertilizer. You are responsible for designing the database.

You need to store data on a variety of plants including scientific name, common name and family.

The environmental conditions of each greenhouse should be recorded including temperature and luminosity.

The soil substrate (type and PH) and the dilution of the new fertilizer is recorded for each tray.

A conclusion for each tray result should be recorded.


Daily observations of plant growth for each plant group must be stored with an optional comment.

Identify the data, and then model the entities in an ERD.

ERD Modelling Exercise

A possible solution

Each greenhouse has many trays with different soil conditions Each plant may be grown in many different trays (with different conditions) Each tray has many observations Each conclusion is about an individual plant grown in a specific tray

Ear, Nose and Throat Research Study

Prior to **Flexible Laryngoscopy** topical nasal preparation is used to reduce patient discomfort and ease passage of the scope. The ideal nasal preparation should be comfortable for the patient, produce adequate anaesthesia and widen nasal patency.

Null hypothesis: There is no difference between **co-phenylcaine spray** or **lidocaine /epinephrine nasal packing** for preparing the nose prior to flexible laryngoscopy in terms of (1) patient comfort; and (2) degree of decongestion and ease of endoscope passage.

Patients rate experience on scale from 0 to 100 (zero = no pain) for each of these:

- Nasal Preparation (NP) bad taste, pain, anxiety and overall unpleasantness
- Flexible Laryngoscopy (FL) pain, anxiety, gagging and overall unpleasantness
- Patients have one treatment only

The surgeon used a visual analogue scale (VAS) from 0 -100 to record:

- Degree of decongestion
- Ease of endoscope passage

Other details recorded:

- Cottle's grading of septal deviation of side scoped
- Time given for preparation to take effect.

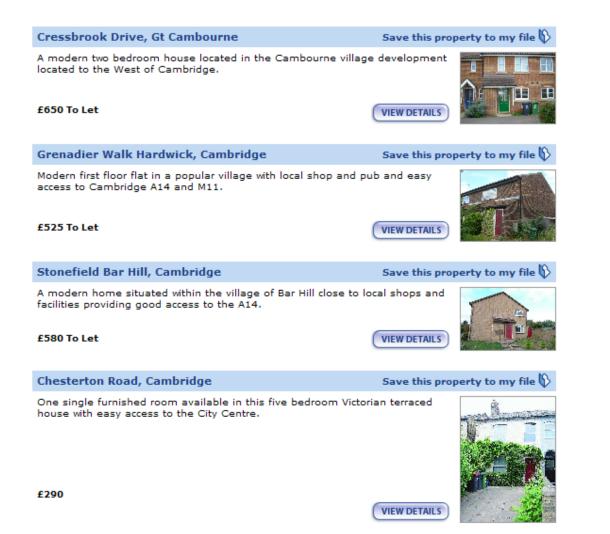
Microsoft Word 97 -

2003 Document

Microsoft Access Database

Adobe Acrobat Document

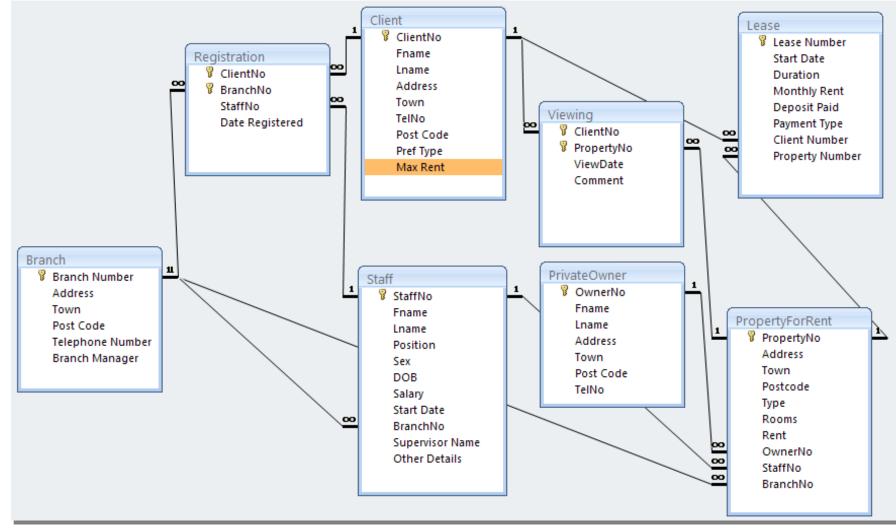
A possible solution


Patient Experience v 2						
🖗 Hospital No						
Initials						
DoB						
Sex						
Diagnosis						
Anaesthetic						
NP bad taste						
NP pain						
NP anxiety						
NP overall unpleasantness						
FL pain						
FL anxiety						
FL gagging						
FL overall unpleasantness						
Degree of decongestion						
Time for preparation to take effect						
Cottle's grading of septal deviation of side scoped						

This is easier than it first appears!

Each patient has one treatment using one anaesthetic and one set of observations.

A 'flat file' one table database could be used. A spread sheet package is an alternative application to use.


MyPlace Rental Properties

MyPlace Estate Agents Case Study A possible solution

