

CUDN PoP Switch Changes 2018

New hardware and configuration changes

UIS Networks - Systems

Agenda

- New PoP switch choices
 - Port assignments
- Recommendations on connecting
- Spanning Tree now and changes
 - How these will interact with your network
- DHCP Snooping & ARP Inspection now and changes

PoP switch choices

Catalyst 3850-24P-L — "1G Option" 20 of 24x 10/100/1000M copper, 435W PoE+ 4x 1G SFP inc. 2x 1G up-/downlink No upgrade charge £2,688 /year

Catalyst 3850-48P-L — "10G Option 1"

44 of 48x 10/100/1000M copper, 800W PoE+ 4x 1/10G SFP+ inc. 2x 10G up-/downlink £5,270 upgrade now • £16,434 thereafter £5,737 /year

Catalyst 3850-12XS-S — "10G Option 2"

12x 1/10G SFP+ inc. 2x 10G up-/downlink \pounds 3,495 upgrade now \pounds 14,660 thereafter \pounds 5,484 /year

Other models *may* be available on request!

+ VAT, if applicable

Copper PoP port assignments

1 Module slot

UIS Networks monitoring UPS or reserved Institutional use Uplinks to CUDN

Catalyst 3850 power & cooling

UPS is now NOT supplied as standard: £275 /year (+ VAT, if applicable) Cost covers replacing of batteries every 3 years t monitoring (We'll be taking yours away, if you no longer want it.)

BGP choices

1G BGP Connection	2x 1GE up-/downlinks	No upgrade charge £2,198 [+VAT] /year
10G BGP Connection	2x 10GE up-/downlinks	No upgrade charge £3,386 [+VAT] /year

BGP requires <u>you</u> to:

- Route <u>all</u> VLANs with ACLs, DHCP relaying, etc.
- Handle multicast (for the voice network)
- Potentially handle VRFs for MPLS VPNs
 - ... else we may need to install separate switches

Recommendations connecting to a PoP

- Due to ECMP (Equal Cost MultiPath), the CUDN *down*links can deliver 1-2Gbit/s down to a 1G PoP, or 10-20Gbit/s to a 10G PoP
 - Later on we may upgrade *up*links similarly (GLBP?)
- This can overwhelm a single 1Gbit/s link
- The UIS Managed Firewall Service is connected "on a stick" and typically uses 2x links for redundancy and performance
 - Data VLANs fed through Managed Firewalls get 2x 1/10Gbit/s up and down now due to ECMP routing to/from them
 - Voice and wireless traffic do NOT go through it
- Consider an LACP port-channel/trunk to your main, top level switch(es)

Spanning Tree Protocol (STP) changes

Current STP configuration (2008)

- CUDN runs Cisco Rapid PVST+ ("Per-VLAN Spanning Tree Plus") internally
- At the time, the CUDN used to extend VLANs across sites and use Spanning Tree to provide redundancy
- BPDUs (Bridge Protocol Data Units Spanning Tree information frames) filtered on ports into institution, and "portfast [trunk]" enabled, blocking interaction with institutional Spanning Trees, for two reasons:
 - 1. To avoid institutional spanning trees upsetting the CUDN backbone
 - 2. Interoperability between different protocols/vendors

STP situation changes

- The CUDN no longer feeds VLANs between sites
 - The backbone is entirely routed
 - Best practice is now to use Spanning Tree only to detect *fault* loops, not to build redundant configurations, where possible
- On the CUDN, Spanning Tree only used between site routers and institutional PoP
- Loops within institutions are still a common problem and can upset a backbone router

New STP configuration (2018)

- The CUDN will continue to run Rapid PVST+
 - (Ideally we'd like to use a standard, but there isn't a practical one: MSTP [Multi STP] is the only one which supports VLANs, but it's a horrible mess, and doesn't work well across administrative boundaries.)
- BPDUs will cease to be filtered on the ports into an institution from the PoP and portfast disabled on trunk ports
- The CUDN will run a root bridge with a priority not lower than 16,384 (on the PoP)
- Institutions are free to join the Spanning Tree, if they wish
 - You can even take over the root bridge (priority <16,384)

Spanning Tree Protocol (STP) changes

(What does that actually mean to me?)

Scenario 1: PVST+ ↔ PVST+

- Cisco switches default to [non-rapid] PVST+
 - Other manufacturers can often be put into this mode
- Institutional & PoP switches should now discover each other w.r.t.
 Spanning Tree
 - Links will begin forwarding immediately (no 30s delay) if Rapid
 - One root bridge, determined by priority
 - · Loops should be detected and blocked, as appropriate
- Things to beware of:
 - IDs of VLANs on untagged/native ports MUST match else "BKN PVID_Inc" port error and will block
 - If you're not using the CUDN VLAN ID, you should filter BPDUs ("spanning-tree bpdufilter enable")

PVST+ ↔ PVST+ — PoP links

$PVST+ \leftrightarrow PVST+ - edge loop$

VLAN 100

VLAN 100

Looped VLANs blocked at edge, isolating problem and removing effect on rest of network

PVST+ ↔ **PVST+** − edge VLAN mismatch

VLAN 100

PVST+ detects mismatched VLAN and blocks port in "BKN PVID_Inc" state

Scenario 2: PVST+ ↔ IEEE STP

- IEEE STP is RSTP (Rapid STP) or MSTP (Multi STP)
 - HP Comware (MST) & most (other than Cisco) vendors default to these
- PVST+ and IEEE STP do NOT interact (except with VLAN 1 on PVST+)
 - BPDUs sent and received but are ignored by switches running the other protocol
 - Separate root bridges for PVST+ and IEEE STP
 - However, PVST+ BPDUs will usually flow through VLANs on IEEE STP switches and come back to the PoP
- Things to beware of:
 - Ports will take 30s to begin forwarding traffic
 - Making a loop on a VLAN will *likely* be detected by the PoP and one port will block — DO NOT build redundant topologies using this!
 - Joining two different VLANs will block the ports with "BKN PVID_Inc" on the PVST+ side on BOTH ports

PVST+ ↔ IEEE STP — PoP links

PVST+ ↔ IEEE STP — edge loop

VLAN 100

PVST+ ↔ **IEEE STP** — edge VLAN mismatch

VLAN 100

Also doesn't matter if VLAN fed from PoP or local

Scenario 3: PVST+ ↔ no STP

- HP ProCurves default to Spanning Tree disabled ("no spanning-tree")
- Effect is similar to when running an IEEE STP: the packets flow through the HP ProCurve and make their way back to the PoP
- Things to beware of:
 - Ports will take 30s to begin forwarding traffic
 - Institutional network will not detect loops or mismatched VLANs and block them itself
 - In the absence of this the PoP will likely do so, at a more institutional level!

PVST+ ↔ no STP — PoP links

PVST+ ↔ no STP — edge loop

VLAN 100

PVST+ ↔ no **STP** — edge VLAN mismatch

Scenario 4: PVST+ ↔ filtered BPDUs

- Nothing does this by default but you might be, given the previous CUDN configuration
- Institution & PoP switches will not discover each other w.r.t. Spanning Tree (as before)
- Things to beware of:
 - Ports will take 30s to begin forwarding traffic
 - Problems will not be discovered and issues may result in catastrophic failures!

PVST+ ↔ filtered **BPDUs** — **PoP** links

PVST+ ↔ superfiltered BPDUs — edge loop

VLAN 100

PVST+ ↔ filtered BPDUs – edge loop

VLAN 100

PVST+ ↔ filtered **BPDUs** — edge VLAN mismatch

Why you shouldn't filter BPDUs

- Filtering prevents the loop detection working
- Keeps links up but can have serious impacts on the upstream network, beyond your institution
- With Spanning Tree, the port will move back into forwarding in 30s, once the fault is resolved
- In the absence of Spanning Tree, the PoP switches do other things to detect loops which are more serious and block ports for minutes on end
- In serious cases, we may manually disable your ports until the problem is resolved

Spanning Tree recommendations

• Enable Spanning Tree

- You can use either Rapid PVST+ or IEEE STP (RSTP or MSTP)
 - Rapid PVST+ may be preferable due to quicker convergence with the PoP (but beware VLAN mismatch)
- Set a priorities to locate the root bridge centrally
- Enable "root guard" or "BPDU guard" on edge ports
- Enable "portfast" on edge ports:
 - On Cisco use "spanning-tree portfast default"
 - On HP ProCurve use "auto-edge" mode (default)
- Use VLAN IDs matching those on the CUDN, or local IDs for internal VLANs

DHCP Snooping & ARP Inspection

DHCP Snooping

- The switch intercepts DHCP packets passing through it to process them
- Permit or deny the packet to flow through the switch and control which ports it goes to
 - Client→Server packets don't go to untrusted ports
 - Server→Client packets blocked from untrusted ports
- Rate limit packets
- Add "Option 82" information about the edge port
- Builds "binding table" to learn about assignments

ARP Inspection

- The switch intercepts ARP packets passing through it to process them
- Blocks ARP Replies from untrusted ports where the IP address wasn't seen being assigned via DHCP first
 - Uses the DHCP Snooping binding table
- Rate limit packets

Current PoP situation

- Some PoP switches use DHCP Snooping and ARP Inspection on non-data VLANs (e.g. voice, APs, etc.) to avoid address spoofing
- Some rate limits applied on institutional downlinks to filter out storms following loops
 - ... loops which Spanning Tree should have caught
- All a bit ad hoc
- Doesn't protect against issues on the data VLAN (at least unless we impose "special measures")

New PoP configuration

- DHCP Snooping and ARP Inspection enabled on ALL VLANs (inc. main data VLAN)
- Trunk ports will be set to:
 - Be trusted for DHCP Snooping and ARP Inspection
 - Will apply a [high] rate limit on both to filter out storms
- Access/edge ports will be set to:
 - Be untrusted for DHCP Snooping
 - Be trusted for ARP Inspection
 - Will apply a [low] rate limit on both to filter out storms

What will this mean?

- Probably nothing, especially if you have Spanning Tree turned on internally
- If you don't, DHCP and ARP upstream will be unreliable as random packets get dropped
- The PoP may become unresponsive (as DHCP and ARP packets are punted to the CPU to be processed, rather than switched in hardware)
- You can't run a DHCP Server on a PoP edge port
- We'll monitor the situation
- You should run these internally

Thank you — any questions?

