
  

 

  

Scientific computing:
An introduction to tools and
programming languages

what you need to learn now to decide
what you need to learn next“ ”

Bob Dowling
rjd4@cam.ac.uk
University Information Services

I should also explain why this course exists. A few years ago a member of 
the UIS conducted some usability interviews with people in the University 
about the usability of some high-end e-science software. The response he 
got back was not what we were expecting; it was “why are you wasting our 
time with this high level nonsense? Help us with the basics!”

So we put together a set of courses and advice on the basics. And this is 
where it all starts. I'm going to talk about the elementary material, what you 
need to know and the courses available to help you learn it. You do not need 
to attend all the courses. Part of the purpose of this course is to help you 
decide which ones you need to take and which ones you don't.

This course is the first in that set of courses designed to assist members of 
the University who need to program computers to help with their science. 
You do not need to attend all these courses. The purpose of this course is to 
teach you the minimum you need for any of them and to teach you which 
courses you need and which you don't.

The final slide of the talk gives a URL through which all the relevant UIS 
courses can be found.



  

 

  

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts



  

 

  

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts



  

 

  

Serial computing

Single CPU

Let's start with the most basic of concepts: the program.

A simple computer program is a linear series of instructions which the 
computer does one after the other. On completing one it moves on to the 
next and so on.

These instructions need not all be of the same sort. Some may take much 
longer than others. Some instructions may be called repeatedly. Some may 
trigger activity elsewhere and not complete until that remote activity is over. 
But the principle is that a program is a series of commands which are run 
one after the other.

In the simplest case all the instructions take place in the same CPU (more 
precisely on a single core in a single CPU).



  

 

  

Parallel computing

Multiple CPUs

Single
Instruction
Multiple
Data

MPI

OpenMP

But programs need not be linear. In the past decade or so scientific 
computing has moved into “parallel programming” where computers with 
multiple processors can run the program through many of them 
simultaneously. It's also possible to run multiple “threads” of control on a 
single processor.

The most common form is called SIMD (pronounced “simm-dee”) which 
stands for “single instruction, multiple data”. In this example the program 
takes the memory allocated to the program’s data and allocates a different 
CPU (in the slide, six CPUs) to run the same code over the different 
components of the data.

This is typically much harder to program correctly and requires specialist 
skills. Two common frameworks for developing parallel code are MPI 
(Message Passing Interface) and OpenMP (Open Message Passing).



  

 

  

Parallel computing courses

Parallel Programming:
Options and Design

Parallel Programming:
Introduction to MPI



  

 

  

Distributed computing

Multiple computers

In the extreme case of parallel programming, we split the calculation not 
only between CPUs but between computers. In this case we have to 
consider the time taken to copy the data between computers as well.



  

 

  

Distributed computing courses

HTCondor and CamGrid



  

 

  

High Perfomance Computing course

High Performance Computing:
An Introduction



  

 

  

Floating point numbers
e.g. numerical simulations

Universal principles:
0.1 → 0.1000000000001
and worse…

>>> 0.1 + 0.1
0.2

>>> 0.1 + 0.1 + 0.1
0.30000000000000004

The base hardware is what manipulates the data in your programs. As a 
result it can have an effect on that data. For example, computers typically 
work in base 2 (“binary”) so they can record real numbers like ½ exactly. 
Decimal fractions like 0·1, however, have to be approximated.

The vast majority of numerical simulations require real numbers, 
approximated as “floating point” numbers in computers. Under certain 
circumstances this can become significant. Inaccuracies in the floating point 
representation can accumulate and give erroneous results. Note that the 
inaccuracies often start hidden and then reveal themselves unexpectedly.



  

 

  

Floating point courses

Program Design:
How Computers Handle Numbers



  

 

  

Text processing

e.g. sequence comparison
text searching

^f.*x$

fabliaux
factrix
falx
faulx
faux
fax
feedbox
…
fornix
forty-six
fourplex
fowlpox
fox
fricandeaux
frutex
fundatrix

“Regular expressions”

But there's more to life than real numbers. Under the covers computers work 
with integers just as much as, and sometimes much more than, floating 
point numbers. These tend not to be used to represent numbers directly but 
to refer into other sorts of data. Good examples of these situations involve 
searching either in databases or in texts.



  

 

  

Regular expression courses

Programming Concepts:
Pattern Matching Using Regular Expressions

Python 3:
Advanced Topics
(Self-paced)

(includes a regular 
expressions unit)



  

 

  

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts



  

 

  

“Divide and conquer”
Complex
problem

Simple
problem

Less complex
problem

Partial
solution

Simple
problem

Simple
problem

Simple
problem

Simple
problem

Partial
solution

Partial
solution

Partial
solution

Partial
solution

Partial
solution

Complete
solution

“divide”

“conquer”

“glue”

Suppose you have a task you need the computer to perform. The key to 
succeeding is to split your task up into a sequence of simpler tasks. You 
may repeat this trick several times, producing ever simpler sub-tasks. 
Eventually you get tasks simple enough that you can code them up.

That sounds trivial.  But that trick, repeated often, is how programming 
works. “Divide and conquer.”



  

 

  

“Divide and conquer” — the trick

Simple
problem

Partial
solution

Simple
problem

Simple
problem

Simple
problem

Simple
problem

Partial
solution

Partial
solution

Partial
solution

Partial
solution

“conquer”

No need to use the
same tool for each
“mini-conquest” !

The reason that this works so well is that you don't have to use the same 
tool for all the subtasks. Different tools are suitable for different bits of your 
task. So long as you can glue the parts together again there is no need to 
use one tool for everything. While it may sound harder to use lots of different 
tools rather than just one the simplification gained by the splitting and the 
specificity of the tools more than makes up for it.



  

 

  

Example

Read 256 lines of data represented in a CSV format. Each
line should have 256 numbers on it, but some are split into
two lines of 128 numbers each. Run Aardvark’s algorithm on
each 256×256 set of data. Write out the output as text in the
same CSV format (exactly 256 numbers per line, every line)
and plot a heat graph of the output to a separate file. Keep
reading 256-line lumps like this until they’re all done.

“

”

In practice, the instructions you are given to write code look scary at first 
glance. The trick is to divide and conquer.



  

 

  

Example

Keep reading 256-line lumps like this until they’re all done.

Read 256 lines of data represented in a

Each line should have 256 numbers on it, but
some are split into two lines of 128 numbers each.

Run Aardvark’s algorithm on each 256×256 set of data.

Write out the
(exactly 256 numbers per line, every line)

output as text in the same CSV format

and plot a heat graph of the output to a separate file.

CSV format.

So we start by dividing. What are the bits we need to worry about?



  

 

  

Example

Keep reading 256-line lumps like this until they’re all done.

Aardvark’s algorithm

256×256 set of data.

output

CSV format plot a heat graph

Read 256 lines of data

Each line will have 256 numbers on it.

CSV format.
Read

Process

Graphics
Write file

Repeat

CSV
Write file

If we can conquer each bit we win.



  

 

  

“Structured programming”

Split program into “lumps”

Use lumps methodically

“Lumps” ?

Programs

Use lumps methodically

Functions

Modules

Units

Do not repeat code

Now we will look at the bits themselves. They go by various names, such as 
“objects”, “functions”, “modules” and “units”. I prefer “lumps”. It's a simple, 
no-nonsense word that rather deflates the pompous claims made by some 
computing people.

If you split your program up into sets of these lumps, and reuse lumps when 
you need the same functionality twice or more, then you stand a good 
chance of success. If you don't, and write chaotic, unstructured code then 
you will have to work much harder to get a program that works and harder 
still to get one that works correctly.

So why am I talking about this before we've even looked at any 
programming languages? It's because this rule about splitting your program 
up into a structured collection of parts is common over every single 
programming language. It's an absolute rule — and they're rare in this 
business!



  

 

  

Example: unstructured code

a_norm = 0.0
for i in range(0,100):

a_norm += a[i]*a[i]

b_norm = 0.0
for i in range(0,100):

b_norm += b[i]*b[i]

c_norm = 0.0
for i in range(0,100):

c_norm += c[i]*c[i]

…

…

Repetition !

So what do I mean? Let's look at an example of bad code. You don't need to 
worry about the language (it's a language called Python that we will talk 
about later) because I hope the general principle is clear. We're calculating

for three different sets of 100 values in three different parts of a program.

This commits the cardinal programming sin of repetition. If we wanted to 
improve the way we calculated this sum we would have to do it three times. 
(And if we want accurate sums we do need to improve it.) 

We might also want to speed up our program. But does our program spend 
the majority of its time doing these sums or a tiny fraction of its time? If I 
spend an hour speeding it up is that more time than I will ever save running 
the slightly faster program? I can't tell until I isolate this operation into one 
part of my program where I can time it.

∑
i=0

i=99

x i
2



  

 

  

Example: structured code

def norm2(v):
    v_norm = 0.0
    for i in range(0,100):
        v_norm += v[i]*v[i]
    return v_norm

a_norm = norm2(a)

b_norm = norm2(b)

c_norm = norm2(c)

…

…

Single instance
of the code.

Calling the function
three times

So let's improve it. We take the repeated operation and move it to a single 
place in the code wrapped in a function. Then in the three parts of the 
program where we calculate our sum, we simply make use of this function.

(What I am illustrating here is written in the Python but the principle is 
universal and hopefully it’s simple enough to read that you don't need 
Python fluency to follow along.)



  

 

  

Structured programming

Once!

Write
function

Test
function

Time
function

Debug
function

Improve
function All good practice follows from

structured programming

Import
function

So our code is only written once.

We can make any improvements or speed ups we want in just one place.

Furthermore we can find out how much time is spent running that function in 
total.

Also, now that we have a separate function, we can test it in isolation from 
the rest of the program to check it gives the right answer! If we do find 
mistakes we only have to fix the code in one place and that place is typically 
easier to find.



  

 

  

Example: improved code

def norm2(v):
    w = []
    for i in range(0,100):
        w.append(v[i]*v[i])
    w.sort()
    v_norm = 0.0
    for i in range(0,100):
        v_norm += w[i]
    return v_norm

a_norm = norm2(a)

b_norm = norm2(b)

c_norm = norm2(c)

…

…

Improved code

No change to
calling function

So let's make an improvement. 

We don't need to understand the details of the improvement but in a 
nutshell, if you are adding up lots of numbers always add together the 
smallest numbers first to get a more accurate answer. 

(For example, in the C programming language on one particular computer if 
I add up 1/n starting with n=1 up to n=10,000,000 I get approximately 
15·404. If I add them up starting with n=10,000,000 and counting down to 
n=1 I get 16·686!)

What is important is that I have made the improvement only once and it has 
immediately affected all three calculations in the program. This would have 
been much harder (three times the typing plus the work finding the cases in 
the program) if I hadn't split out the calculation into a function.

All good programming follows from good structuring.



  

 

  

Example: improved again code

def norm2(v):
    w = [item*item for item in v]
    w.sort()

    v_norm = 0.0
    for w_item in w:
        v_norm += w_item
    return v_norm

a_norm = norm2(a)

b_norm = norm2(b)

c_norm = norm2(c)

…

…

Still no change to
calling function

More flexible,
“pythonic” code

So let's improve it again!

This version makes the function cope with sequences of numbers of any 
length. This is just good house-keeping but might be useful if all of a sudden 
my sequences had 1,000 entries in them rather than 100.

It has also introduced a native Python idiom which makes it (fractionally) 
faster.

Again, I have only had to make the change once and there is no change to 
the main flow of the code; I just call the function, same as I did before.



  

 

  

Example: best code

from library import norm2

a_norm = norm2(a)

b_norm = norm2(b)

c_norm = norm2(c)

…

…

Somebody
else’s code!

No change to
calling function

And now we come to the ultimate improvement: 

Get someone else to do it for you!

There are people who make their living writing routines to do this donkey 
work extremely quickly in ways adapted specifically for your sort of 
computer. They take all their functions and wrap them together in so-called 
“libraries”. What you need to do is to call on one of these libraries and to use 
a function from it. You don't need to know how it does it, and the details may 
vary from machine to machine, but you just need to know that it does it. 
These functions are written by experts. Almost certainly they have done a 
better job than you ever will. So don't compete with them; exploit them. Do 
not try to do for yourself what someone else has done for you already. 

Never re-invent the wheel.



  

 

  

Structured programming courses

Programming Concepts:
Introduction for Absolute Beginners



  

 

  

Libraries

Written by experts

In every area

Learn what
libraries exist
in your area

Use them

Save your effort
for your research

These libraries of functions are your salvation. All you need know is what 
libraries exist and how to call them. Much of our programming courses 
consists of telling you this and giving you an introduction to the library to get 
a feel for its shape.

Your time is better spent on original research than inferior duplication of 
work that already exists. Save your effort for your research!



  

 

  

Example libraries

Scientific Python

Numerical Algorithms Group

Numerical Python

So what can we get from libraries? The question “what can't we get” 
probably has a shorter answer. You name it; the libraries have got it.

For example the NAG libraries and the Scientific Python libraries have 
functions for at least the following topics:

• Roots of equations

• Differential and Integral Equations

• Interpolation, Fitting & Optimisation

• Linear Algebra

• Special Functions

and many, many more.



  

 

  

Hard to improve on library functions

for(int i=0; i<N, i++)
{
for(int j=0; j<P, j++)
{
for(int k=0; k<Q, k++)
{

a[i][j] += b[i][k]*c[k][j]

}
}
}

for(int j=0; j<P, j++)
{

for(int k=0; k<Q, k++)
{

This “trick” may save you 1%
on each matrix multiplication.

It is a complete waste of time!

Here's a trivial example of why you should rely on external libraries.

These two ways to multiply matrices differ in only one regard: the order of 
the operations. One is faster than the other because of the way the system 
manipulates the memory that the values are stored in.

You don't need to know this. You just need to know that the person who 
wrote the matrix multiplication function in the matrix library you should be 
using did know it and picked the right algorithm.

The one on the right is slightly faster in some languages. Neither is as 
accurate as it could be because we ought to order the added terms smallest 
to largest before adding them if we were concerned about precision.

However, this is the level of change that you might make to give your 
program a 5% speed up.

But for large matrices the difference between these two techniques is utterly 
irrelevant.



  

 

  

Hard to improve on library functions

( )( )( ) A
11

A
21

A
12

A
22

B
11

B
21

B
12

B
22

C
11

C
21

C
12

C
22

=

M
1
=(A

11
+A

22
)(B

11
+B

22
)

M
2
=(A

21
+A

22
)B

11

M
3
=A

11
(B

12
B‒

22
)

M
4
=A

22
(B

21
B‒

11
)

M
5
=(A

11
+A

12
)B

22

M
6
=(A

21
‒A

11
)(B

11
+B

12
)

M
7
=(A

12
A‒

22
)(B

21
+B

22
)

C
11

=M
1
+M

2
‒M

5
+M

7

C
12

=M
3
+M

5

C
21

=M
2
+M

4

C
22

=M
1
‒M

2
+M

3
+M

6

Applied recursively: much faster

Volker Strassen's algorithm, as shown in the slide, is far more efficient for 
large matrices but I doubt you would ever have thought of it. I also doubt you 
would want to code it, either.

So use a library!



  

 

  

Algorithms

Size of dataset /
Required accuracy

Time taken /
Memory used

vs.

Algorithm selection makes or breaks programs.

O(n2) notation

Every function implements a recipe. It generates output from input 
somehow. The posh name for that “somehow” is an algorithm. There are 
efficient ways to do some tasks and inefficient ways to do the same thing. 
No optimizer is going to save you from choosing the wrong way to do 
something.

For example, there are two ways to sort a list of numbers. (Actually there are 
very many more than two.) Suppose they both take 10 seconds to sort 10 
values. One, called “bubble sort” would then take roughly 40 seconds to sort 
20 and 1,000 seconds to sort 100. The other, called “quick sort”, would take 
26 seconds to sort 20 values and 200 seconds to sort 100. The rate at which 
different algorithms scale as the size of their inputs go up is of critical 
importance and has grown its own notation called “Big O” notation and we 
say that bubble sort is “order of n squared” because the amount of time it 
takes increases like the square of the number of elements it has to sort. We 
write this as “O(n2)”, hence the name “Big O notation”. 

The importance of picking a good algorithm cannot be overstated. This is 
why you should exploit external libraries written by dedicated people. They 
have found the good algorithms.



  

 

  

Unit testing

Test each function individually

Test each function’s common use

“edge cases”

bad data handling

Catch your bugs early !

Extreme version: “Test Driven Development”

Now we move on to another aspect of generic good practice, but another 
one that comes from splitting a program into a structured collection of 
lumps.

If we have split our common actions into functions we can test those 
functions individually or in small groups. This is called “unit testing”. 

If you write a function to sum x2 over 100 values you ought to write a test 
that feeds it 1 a hundred times. Do you get 100?  Or do you get 99 because 
you have the end condition slightly wrong? 

If you get into the discipline of testing functions as you go along, then you 
will save yourself an enormous amount of debugging time towards the end 
of the program writing. But it does require discipline in the short term.



  

 

  

Revision control

Code “checked in” and “checked out”

Branches for trying things out

Communal working

Reversing out errors.

Source code for most programs (but not all, e.g. spreadsheets) consists of 
plain text. 

Revision control lets you say that “this is version X of this file” (or this set of 
files). You can then say “go back to version 5” or “show me version 2”. Some 
systems support locking where you can say “I'm working on this file; nobody 
touch it.” Other don’t let you lock but merge back the changes made by 
people in different parts of the same file.

Revision control systems work over multiple computers too. This lets lots of 
people all work on the same project.

Another standard facility is to split off a “branch”. If you want to experiment 
with some changes you start with version 5 say and then create version 5.1, 
5.2 etc. rather than 6 and 7. At the end of the experiment, if you like what 
you have got, you merge your final version 5.x back, or you simply drop it 
and return to the original version 5.0 and start again.

Perhaps most importantly if you do build a version 6 and realise you have it 
completely wrong you can abandon it and return to version 5!



  

 

  

Revision control

Two main programs: subversion

git

Starting from scratch? git
Something in use already? Use it!

github.com

try.github.io

free repository (for open source)

free online training

There are two current revision control systems: subversion and git.

The more recent program, git, was designed by Linus Torvalds when the 
subversion program could no longer cope with his software project (the 
Linux kernel).

If you have an existing revision control system, use it, whatever it is.

If you are starting from scratch, use git.

git has an additional advantage. If you are prepared to work in an open 
environment (anyone can join in) on open source software there is a 
company, GitHub, that will give you a git repository free. (And if not, then 
they’re not too expensive.) Better still, they will even teach you how to use 
git!



  

 

  

Integrated Development Environment

“All in one” systems: necessarily quite complex

Eclipse Most languages

Qt Creator C++. JavaScript

Visual Studio C++. C#, VB, F#, …

NetBeans Java

XCode Most languages

Often sitting in front of a revision control system modern programmers often 
(typically?) use an Integrated Development Environment (“IDE”).

These combine editors that help you with specific languages, guides to 
other parts of your programs or system libraries, revision control systems,  
build systems to see if your program actually compiles, and test systems to 
run your unit tests. (You did write unit tests, didn’t you?)

By far the most commonly used IDE at the moment is Eclipse. In the pure 
Microsoft world Visual Studio is a close second and the pure MacOS world 
tends to use XCode.



  

 

  

make — the original build system

Command line tool

Dependencies

Build rules

Used behind the scenes by many IDEs

$ make target

target target.c

cc target.c -o target

Makefile

But the grand-daddy of all build systems outstrips the IDEs thousands to 
one. (In fact most IDEs use it behind the scenes.)

The make program records how one file depends on another, so that if you 
update one file make knows which other files now need to be rebuilt. It also 
stores information about how to rebuild most types of file.

The configuration files for make, known as Makefiles are a little strange.

The strangeness harks back to the creation of the first make in 1977 by 
Stuart Feldman of Bell Labs. The (potentially apocryphal) story is this: 
Feldman knocked together a quick version of make which used lots of short 
cuts and dirty tricks letting him write a prototype quickly. He let some people 
use it and went home for the night. It proved so popular that when he 
returned to work the following morning it was in use in so many projects that 
any change of specification was vetoed by his colleagues. 



  

 

  

Building software courses

Unix:
Building, Installing and Running Software



  

 

  

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts



  

 

  

Specialist applications

Often no need to program

Or only to program simple snippets

All have pros and cons



  

 

  

Spreadsheets

Microsoft Excel

LibreOffice Calc

Apple Numbers

You might not think of spreadsheets as “programming” but spreadsheets 
embed single commands, which the program interprets, in amongst the 
data. They are a legitimate interpreted programming system. They simply 
hide it well.

There is only one spreadsheet most people are familiar with: Microsoft 
Excel, part of the Microsoft Office suite of programs. There is a free 
equivalent, Calc, which is part of the LibreOffice.org suite of free Office 
tools. They are equivalent enough for most purposes so long as the 
functions don't invoke too complex a set of macros. Apple's Numbers 
component of iWork also provides a spreadsheet but is not particularly 
similar to Excel.



  

 

  

Spreadsheets

Taught at school Taught badly at school!

Easy to tinker Easy to corrupt data

Easy to get started Hard to be systematic

Very hard to debug

Example:
Best selling book,
buggy spreadsheets!

This format does not lend itself well to revision control and shared working 
as everything is stored in a single, binary format file.

It is also very easy to corrupt data in a spreadsheet and notoriously hard to 
debug problems.

A recent, high-profile example of this came from the book “Capital in the 
Twenty-First Century”. This was a politically charged book that made some 
very significant claims regarding the concentration of money in the hands of 
“the 1%”. Unfortunately, the author based his calculations in Excel and made 
mistakes. When the mistakes were corrected many of his conclusions 
vanished.

There is, incidentally, a moral in this tale beyond “don’t use spreadsheets for 
anything important”. When you are debugging a program it is not enough to 
stop looking for bugs when you get answers you agree with.



  

 

  

Excel courses

Excel 2010/2013:

Introduction
Analysing and Summarising Data
Functions and Macros
Managing Data & Lists



  

 

  

Statistical software

There are three big players in statistics packages in Cambridge: Stata, 
SPSS and R. Stata is the big commercial player (with SPSS a close 
second.) R is the free package.



  

 

  

Statistical software

Stata: Introduction

R: Introduction for Beginners

SPSS: Introduction for Beginners

SPSS: Beyond the Basics



  

 

  

Mathematical manipulation

Matlab

Mathematica

Octave

There are packages for helping with mathematical manipulation and casual 
graphing of interim results. The two big players in the Cambridge 
environment are MATLAB and Mathematica with MATLAB tending to 
dominate over Mathematica. There is also a free product called Octave 
which seeks to be a clone of Matlab.

We tend to recommend people avoid Mathematica. While it seems 
deceptively easy to use at first there is no consistency to it. With Matlab and 
Octave, once you know the way to do a few tasks the rest seem intuitive.



  

 

  

Mathamtical software courses

Matlab:

Introduction for Absolute Beginners
Linear Algebra
Graphics (Self-paced)



  

 

  

Drawing graphs

Manual or automatic?

If you want to want to plot graphs based on the output of your programs you 
will need some sort of plotting package. The “bad way” to do this is to take a 
graphics library (in Fortran or C, both exist) and to bolt some graphics code 
into your numerical program. The right way is to have your numerical 
program produce its results and then write a distinct graphics program in a 
graphics-specific language or package. Alternatively you can import the data 
into a purely manual graphics package and fiddle to your heart's content. I 
assume you will have better things to do with your time and just want a 
program to create a graph glued to the other bits of your project. This is 
what I mean by “automatic” rather than “manual”.

A very common approach is to export as comma separated value files (CSV) 
and to then create graphs in Excel or another spreadsheet.

There are two dedicated graphics languages: gnuplot and ploticus. 
Both are available on the MCS. In addition there is a graphics module for 
Python called matplotlib.

Note that even if your main program is written in Python and you want to use 
the Python graphical module we still advise that you split the two tasks — 
creating your data and graphing your data — into two separate programs.



  

 

  

Courses for drawing graphs

Python 3:
Advanced Topics
(Self-paced)

(includes a 
matplotlib unit)



  

 

  

Course outline

Good practice

Specialist applications

Programming languages

Basic concepts



  

 

  

Computer languages
Interpreted Compiled

Shell
script

C,C++,
Fortran

Perl JavaPython

What the
system
sees

What
you do

What
files get
created

Untyped Typed

Programming languages are traditionally split into two camps: “compiled 
languages” which are converted from plain text to machine code which is 
then run by the computer, and “interpreted languages” where the plain text is 
read, line by line, by an “interpreter” which then issues machine-level 
commands on the script's behalf. But reality is less simple than that and 
they actually form a spectrum.

At one end we have shell scripts which are pure interpreted languages. Perl 
is essentially the same, though internally the Perl text is converted into a 
condensed “byte code” which is then interpreted. Python goes a stage 
further and writes out the byte code for later re-use, creating a file thing.pyc 
for each text file thing.py. (The “c”, confusingly, stands for “compiled”.) 
However from the user's perspective this all happens automatically and 
there is no need to be aware of the conversion.

With Java there is an explicit user step where the user compiles the Java 
source code (thing.java, say) into a pseudo-machine code file (thing.class). 
This contains code for a fictitious CPU emulated by the Java run-time 
system which essentially interprets the Java byte codes. From the user's 
perspective there is a compilation phase, even though what is produced is 
not native machine code.

Finally there are the true compiled languages like C, C++ and Fortran. With 
these languages the compilation phase generates native CPU instructions, 
true machine code, which can be passed directly to the computer.



  

 

  

Shell script

Suitable for…

gluing programs together

“wrapping” programs

small tasks

Easy to learn

Very widely used

Unsuitable for…

performance-
critical jobs

floating point

GUIs

complex tasks

The shell is the fundamental interpreted language. The commands you type 
at the command line are interpreted by the shell and acted on. Similarly we 
can put those commands in a file and have the shell interpret them from 
that. 

Shells scripts are the classic “glue” for holding together a set of programs. If 
you have a set of programs which can be run from the command line and 
which have to interoperate then a shell script is what you want to use.

They can also be used for “wrapping” programs. This lets you run programs 
with your default parameters, or in a certain environment, without having to 
manually set each parameters manually or change your environment 
manually each time you run it.

Shell scripts can also be used to run certain small tasks themselves. So 
long as the task is very simple, and stays very simple then this is OK. Small 
scripts like this have a habit of growing with time, though, and very soon you 
end up in a situation where you should be using one of the more powerful 
scripting languages we will meet later.

Shell scripts are not suitable for computationally intensive work (though they 
can call other programs that are, of course) and they are not suitable for 
writing GUIs in (though people have tried).



  

 

  

Shell script

#!/bin/bash

job="${1}"
…

Several “shell” languages:

/bin/sh /bin/csh

/bin/bash

/bin/tcsh/bin/ksh

/bin/zsh

/bin/sh

There are many shells. The only rational one to choose is bash, the Bourne 
again shell, which is a play on the name of Simon Bourne who wrote one of 
the very early shells.

The most important schism is between the “C-shell” and the “Bourne shell” 
shells. Avoid C-shell; it's dying.



  

 

  

Shell scripting courses

Unix:

Introduction to the Command Line Interface
(Self-paced)

Simple Shell Scripting for Scientists

Simple Shell Scripting for Scientists
— Further Use



  

 

  

“Further shell scripting”?

Python!

✘

✔

A word of caution is advisable here. We teach quite a bit of shell scripting in 
the UCS course, but not all of it. If you ever find yourself looking for an 
advanced shell scripting course then our advice is that you have left the 
arena where shell script is the right tool for the job. We would recommend 
Python as a better alternative. 

Just because the shell can do a bit more doesn't mean that you should use 
it for that. So this leads us on to the more powerful scripting languages…



  

 

  

High power scripting languages

Python

Perl

#!/usr/bin/python

import library
…

#!/usr/bin/perl

use library;
…

Both can call out to libraries
written in other languages.

Both have extensive
libraries of utility functions.

The shell, which we saw in the previous slides, was designed for launching 
other programs rather than being a programming language in its own right. 
We will now turn to the two primary scripting languages that were designed 
for that purpose: Python and Perl. 

Again, neither is directly appropriate to computationally very intensive work 
but both can make use of external libraries that have been written in other 
languages that are. Python, in particular, has developed a major following in 
the scientific community and is no slacker for medium scale problems.



  

 

  

Perl The “Swiss army knife” language

Suitable for…

text processing

data pre-/post-processing

small tasks

CPAN: Comprehensive 
Perl Archive Network

Widely used

Bad first language

Very easy to write
unreadable code

“There's more than
one way to do it.”

Beware Perl geeks

Perl was written to be a replacement for the text manipulation programs 
sed, awk and grep. These were simple tools designed for specific sorts of 
text manipulation “in line”. They would typically sit in a pipe line of 
commands and filter the data as it flowed past, a line at a time. Perl can be 
used for all that but a whole lot more besides. 

Perl has a very extensive support library supplied by the Comprehensive 
Perl Archive Network (CPAN). Most of it does not come installed by default 
but has to be added as and when you need the components. The problem is 
that there are a lot of interdependencies between the elements of the CPAN 
library and if you try to add one you find yourself importing a whole stack of 
them. There is a utility called cpan to assist with this but it is still far from 
adequate. (You can find the archive at http://www.cpan.org/.)

Perl is suitable for simple text processing but is not suitable to learn as your 
first serious programming language. It is infamous for “write once read 
never” code that is quite illegible to anybody other than the person who first 
wrote it and is hard work even for him or her after six months. Perl takes 
pride in its slogan that “there's more than one way to do it”; any task can be 
tackled by Perl in many different ways. Unfortunately, if the author of a Perl 
script knew one way and the reader of the script knows another the reader 
will have problems understanding just what the script does. Perhaps 
because of its hostility to the casual reader, Perl has attracted the worst sort 
of geeks who take a perverse pride in writing dense, wholly inpenetrable 
Perl code. At least it keeps them off the streets.



  

 

  

Python “Batteries included”

Suitable for…

text processing

data pre-/post-processing

small & large tasks

Built-in comprehensive
library of functions

Scientific Python library

Excellent first
language

Easy to write
maintainable code

The “Python way”

Code nesting style
is “unique”

Very widely used

The other powerful scripting language we will discuss is Python. Python was 
written after Perl became widely used and has the benefit that its author 
learned from Perl's mistakes. Despite being more recent it has caught up 
and is now very common in Cambridge and the scientific community 
worldwide, overtaking Perl.

Python is also very easy to learn and we recommend it as a first 
programming language.

It comes with its own fairly extensive libraries which give it the slogan 
“batteries included”. Most of what you need for general computing comes 
with the language.

In addition the scientific community has built the “Scientific Python” (SciPy) 
libraries which are in turn built on top of the “Numerical Python” (NumPy) 
libraries which provide very efficient array-handling routines (written in a 
language other than Python).

You can learn all about SciPy at http://www.scipy.org/.

Python lends itself very naturally to writing well structured and manageable 
code. It has a style of code that is unique and which puts off some people 
but it's easily dealt with in the editor. The issue is that where most languages 
use open and closed brackets to clump instructions together, Python uses 
levels of indentation.



  

 

  

Python courses

Python 3:
Introduction for Absolute Beginners

Python 3:
Further Topics
(self paced)

Python 3:
Introduction for Those with
Programming Experience



  

 

  

Compiled languages

No specialist 
system and
scripts are not
fast enough

Library
requirement
with no script
interface

C

C++

Fortran

Java

Compiled
language

Use only as
a last resort

Then there are the compiled languages.

It's perhaps slightly unfair to categorise them as “last resorts” but they do 
require more effort to write in and are more trouble learning than the others.

So if there is no appropriate specialist system and the Perls and Pythons of 
this world aren't fast enough, or if you need to use a library written in a 
compiled language that cannot be accessed through a simpler scripting 
language, then you may have to use a compiled language.

I will cover three “true” compiled languages here and also Java because 
from the point of what you have to do there is an explicit compilation stage.



  

 

  

Compiling, linking, running

source code files

object files

executable

execution

fubar.c

main()
pow()
zap()

snafu.c

pow()
zap()
printf()

compilation

linking

run-time

fubar.o

main()
pow()
zap()

snafu.o

pow()
zap()
printf()

text files

machine code files

fubar

main()
pow()
zap()
printf()

fubar

machine code file

libc.so.6

…
printf()
…

I'll use C as the example in these slides, but the same applies for C++ and 
Fortran.

We start with the source code (typically multiple files). 

Compilation proper consists of taking the individual plain text source files 
and turning them into machine code for the computer. Each source file, 
fubar.c say, is individually converted into a machine code (or “object 
code”) file called an object file, fubar.o, which implements exactly the 
same functionality as the source code file. Any function calls in the source 
code are translated to function calls in the machine code. If the function's 
content isn't defined in the source code then it's not defined in the machine 
code.  And so it goes on. This is a pure “translation” process; source code is 
translated, file for file, into machine code.

The next stage is called “linking”. This is the combination of the various 
machine code files into a single executable file. The function definitions 
defined in the various object files are tied together with their uses in other 
object files. Calls to functions in external libraries are tied to the file 
containing the library so that, at run-time, the operating system can hook 
those function definitions in too.



  

 

  

No need to compile whole program

Python
script

Critical
function

Also note that if you don't need to write your entire program in a compiled 
language just because you need to write part of it that way. For example 
there are hooks to call Fortran routines from Python and Python objects 
which can be manipulated by Fortran. Many of the support libraries for 
Python are written in languages other than Python.



  

 

  

No need to write the whole
program in a compiled language

Python
script

Python
module

function.c

C, C++ or
Fortran

SWIG

function.f
f2py

If there is a numerically intensive section in your program by all means write 
it in C or Fortran. But don't drag the rest of the program with it. There are 
tools which take C, C++ or Fortran code and create machine code libraries 
that act as Python libraries (called “modules” in Python-speak).



  

 

  

Fortran

The best for numerical work

Excellent numerical libraries

Unsuitable for everything else

Very different versions:
77, 90, 95, 2003

For numerical work there's Fortran. There still is no comparison; if you are 
doing numerical work you are best off using Fortran. The best numerical 
libraries are written in Fortran too.

However, it is probably the wrong choice for more or less anything else.

You also need to be careful about the various different versions of Fortran. 
For a long time Fortran 77 was the standard. Now we tend to use a mix of 
Fortran 90 and Fortran 95. Fortran 2003 has yet to make a serious impact.



  

 

  

Fortran course

Fortran:
Introduction to Modern Fortran

Three full days



  

 

  

C

Excellent libraries

Superceded by C++ for applications

The best for Unix (operating system) work

Memory management

The C programming language made its name by being the language used to 
write the Unix operating system. As a result it is the best of the compiled 
languages for interfacing with the operating system. Because it is the 
language for an operating system used by developers a very large number 
of libraries and programs have been written in it.

Arguably it has been superceded for application programming by C++ but it 
is still very widely used.

The most important problem with C is the issue of “memory management”. 
In C you are required to explicitly “free” objects that you no longer need to 
return their memory space allocation to general use. Programs that don't do 
this suffer from “memory leaks” and tend to grow with time. Once they get 
too big for the system running them they become slow as the system has to 
compensate for the amount of memory they claim to need. Finally they 
collapse. Alternatively, programmers can accidentally free memory that the 
program actually does require. These programs tend to die suddenly. It's 
also possible to point accidentally to the wrong part of memory and get 
nonsense results back.

All these memory management issues can be handled with careful 
programming, but the language offers no assistance of its own.



  

 

  

C++

Standard template library

Very hard to learn well

Extension of C

Object oriented

General purpose language

Strictly speaking C++ is an extension of C. However, it should be 
approached as an entirely different language. “Writing C in C++” is a classic 
mistake.

C++'s extension over C is that it implements “object oriented” programming. 
Think of objects as particularly powerful “lumps” of your program. However, 
using objects is a whole extra skill that has to be learnt.

C++ also comes with a particularly useful library called the “standard 
template library” which allow these objects to be manipulated in various 
ways. Because this library has been written by experts it typically forms a 
very useful resource to avoid you having to code the methods yourself.

All told, C++ is a decent general purpose language.

The downside, however, is the C++ is a huge language. It also has a serious 
number of gotchas including its own style of memory management 
problems. 

C++ is easy to learn the basics of but very hard to learn well. To quote 
Bjarne Stroustrup, the creator of C++, from the introduction to his book: 
“How long will [leaning C++ from scratch using this book] take? … maybe 15 
hours a week for 14 weeks.” (Stroustrup, Bjarne (2008).  Programming: 
principles and practice using C++.) That's an hour a day for every working 
day in 42 weeks!



  

 

  

C++ books

“Thinking in C++, 2nd ed.”

Eckel, Bruce (2003)
(two volumes: 800 and 500 pages!)

“Programming: principles
and practice using C++”

Stroustrup, Bjarne (2008)
harder but better for scientific computing



  

 

  

From the intro to Stroustrup’s book

“How long will [leaning C++ from scratch
using this book] take? … 
maybe 15 hours a week for 14 weeks.”



  

 

  

C++ course

C++:
Programming in Modern C++

12 lectures, 3 terms,
significant homework

Uses Stroustrup’s book



  

 

  

Java

Some poorly thought out libraries

Multiple versions: Use >= 1.6
1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7

Object oriented

General purpose language

Much easier to learn and use than C++

Finally I'll talk about Java. This, like C++, is a good general purpose 
language and is much easier to learn and to use. It implements automatic 
memory management so those difficulties are gone too.

Because it is implemented as a bye-code interpreter, interpreting the code 
generated by the supposed compiler, its compiled files work across all 
platforms with at least the particular version of the Java runtime system.

Some of its libraries aren't particularly well thought out, however, and there 
is a good deal of difference between the various versions of the language, 
though the Java maintainers do guarantee back-compatibility. If you stick to 
versions 1.6 or later you should do OK.



  

 

  

Java courses

Object oriented programming CL lectures

(also classes,
ask at the CL)



  

 

  

Scientific Computing

training.cam.ac.uk/ucs/theme/scientific-comp

scientific-computing@ucs.cam.ac.uk

www.ucs.cam.ac.uk/docs/course-notes/unix-courses


