
Python 3: Structured text (CSV) files
Bruce Beckles mbb10@cam.ac.uk

Bob Dowling rjd4@cam.ac.uk

29 October 2012

Prerequisites
This self-paced course assumes that you have a knowledge of Python 3 equivalent to having completed one
or other of

• Python 3: Introduction for Absolute Beginners, or

• Python 3: Introduction for Those with Programming Experience

Some experience beyond these courses is always useful but no other course is assumed.

The course also assumes that you know how to use a Unix text editor (gedit, emacs, vi, …).

Facilities for this session
The computers in this room have been prepared for these self-paced courses. They are already logged in
with course IDs and have home directories specially prepared. Please do not log in under any other ID.

At the end of this session the home directories will be cleared. Any files you leave in them will be deleted.
Please copy any files you want to keep.

The home directories contain a number of subdirectories one for each topic.

For this topic please enter directory csv. All work will be completed there:

$ cd csv

$ pwd

/home/x250/csv

$

These courses are held in a room with two demonstrators. If you get stuck or confused, or if you just have a
question raised by something you read, please ask!

These handouts and the prepared folders to go with them can be downloaded from
www.ucs.cam.ac.uk/docs/course-notes/unix-courses/pythontopics

You are welcome to annotate and keep this handout.

The formal Python 3 documentation for the topics covered here can be found online at
docs.python.org/release/3.2.3/library/csv.html

Table of Contents
Prerequisites... 1
Facilities for this session... 1
Notation.. 3

Warnings.. 3
Exercises... 3

Exercise 0.. 3
Input and output... 3
Keys on the keyboard.. 3
Content of files... 3

What’s in this course... 4
What is a CSV file?... 5

Exercise 1.. 5
The Python csv module.. 6

Opening files for use with the csv module...6
Reading from a CSV file... 7

Exercise 2.. 8
Writing a CSV file.. 8

Exercise 3.. 9
Delimiters and initial space... 9

Exercise 4.. 11
Exercise 5.. 14

Dialects... 14
Final exercise.. 15

Exercise 6.. 15

2/15

Notation

Warnings

! Warnings are marked like this. These sections are used to highlight common
mistakes or misconceptions.

Exercises


Exercise 0

Exercises are marked like this. You are expected to complete all exercises. Some
of them do depend on previous exercises being successfully completed.
An indication is given as to how long we expect the exercise to take. Do not panic
if you take longer than this. If you are stuck, ask a demonstrator.
Exercises marked with an asterisk (*) are optional and you should only do these if
you have time.

Input and output
Material appearing in a terminal is presented like this:

$ more lorem.txt
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
--More--(44%)

The material you type is presented like this: ls. (Bold face, typewriter font.)

The material the computer responds with is presented like this: “Lorem ipsum”. (Typewriter font again but in
a normal face.)

Keys on the keyboard
Keys on the keyboard will be shown as the symbol on the keyboard surrounded by square brackets, so the
“A key” will be written “[A]”. Note that the return key (pressed at the end of every line of commands) is written
“[]”, the shift key as “[]”, and the tab key as “[]”. Pressing more than one key at the same time (such as ↲ ⇧ ↹
pressing the shift key down while pressing the A key) will be written as “[]+[A]”. Note that pressing [A] ⇧
generates the lower case letter “a”. To get the upper case letter “A” you need to press []+[A].⇧

Content of files
The content1 of files (with a comment) will be shown like this:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. This is a comment about the line.

1 The example text here is the famous “lorem ipsum” dummy text used in the printing and typesetting
industry. It dates back to the 1500s. See http://www.lipsum.com/ for more information.

3/15

What’s in this course
In the introductory courses we warn you not to use the split() method of strings to split lines on, for
example, commas. We tell you that Python has a specialized module to do this better than you ever could.
This topic is about that module.

1. What is a CSV file?

2. The Python csv module

2.1. Opening files for use with the csv module

3. Reading from a CSV file

4. Writing a CSV file

5. Delimiters and initial space

6. Quoting

7. Dialects

This topic introduces the csv module but does not cover every last detail.

The online Python documentation for this module is at:
http://docs.python.org/py3k/library/csv.html

After importing the module you can get help:

>>> help(csv)

4/15

What is a CSV file?
We’ve already met the limitations of the split() method of strings for handling input.


Exercise 1

(a) Look at the files data1.csv, data2.csv, data3.csv, data4.csv to see
different ways that a spreadsheet can export the same data as text.

(b) Look at the files weird1.csv, weird2.csv, weird3.csv, weird4.csv,
weird5.csv, weird6.csv to see some examples of awkward cases.

These files are all examples of “Comma Separated Value (CSV) files”.

These files are typically created by exporting from spreadsheets or databases, often for import into other
spreadsheets or databases.

CSV files are files where each line has the same structure, consisting of a number of values (called “fields”)
separated by some specified character (or sequence of characters), typically a comma (hence the name
“comma separated values”). The character (or characters) that separates the fields is called a “delimiter”.

There may be spaces after (or before) the delimiter to separate the fields, or the fields may be “padded out”
with spaces to make them all have the same number of characters. (The number of characters in a field is
called the field’s “width”.)

Obviously, we could write our own functions for making sense of (parsing) every arrangement of data we
come across, but there is an easier way for this large class of text files. We use one of the standard Python
modules: the csv module.

Compare data1.csv and data2.csv. The file data2.csv doesn’t even use commas but TABs as its
delimiter. Also, in CSV files, data with spaces in it is often “quoted” (surrounded by quotation marks) to make
clear that it is one single item of data and should be treated as such. In Python this is not necessary unless
you are using a space as your delimiter, but you will often find that programs that produce CSV files
automatically quote data with spaces in it.

Look at data4.csv. If you want, you can quote all the data in the file, or all the text data. Python doesn’t
mind if you quote data even when it is not strictly necessary.

Look at von Hayek’s entry in weird4.csv. If your data contains special characters, such as the delimiter or
a new line (‘\n’) character, then you will need to quote that data or Python will get confused when it reads
the CSV file.

5/15

The Python csv module
The Python csv module provides ways to read and write CSV files. We load the module in the usual way
using import:

>>> import csv

And, once the module has been loaded, we can get help on it using help():

>>> help(csv)

As well as functions and types of objects (“classes”) for working with CSV files, the module also provides
some constants that are used to set certain options for its functions. We will meet some of these options
later.

If you have already done the topic on exceptions (“Python 3: Handling errors”), then it is worth noting that the
csv module also defines an exception that is used when something goes wrong with any of its functions.
This exception is “Error”, but as it is defined in the csv module, you would normally refer to it by prefixing it
with “csv.”, e.g.

try:

 Do something using functions from the csv module

except csv.Error:

 print('Problem with CSV file!')

Opening files for use with the csv module

As we saw in the introductory courses, Python usually reads a text file a line at a time. Python knows when a
line ends because each line ends with an “end of line” (EOL) indicator2. On Unix and Linux the EOL
indicator is the new line character (‘\n’); on Windows it is actually two characters, one of which is the new
line character. And, as we saw earlier, the fields in a CSV file might contain new line characters (e.g. in the
weird4.csv file in Exercise 1).

So that the csv module can handle CSV files correctly regardless of the operating system on which the files
were created, and regardless of whether or not the fields of the file contain new line characters, we need to
tell Python not to do any special handling of the EOL indicator for CSV files. We do this by using a special
option when we open the file: newline=''.

For example, we would open a CSV file for reading like this:

>>> input_file = open('data1.csv','r',newline='')

…and we would open a new CSV file for writing like this:
>>> output_file = open('output.csv','w',newline='')

!
In the arguments we give the open() function, the “newline=''” option always
comes after the name of the file and the mode we in which we want to open the
file.

2 The documentation for the csv module refers to the EOL indicator as the “line terminator” or the “string
used to terminate lines”.

6/15

Reading from a CSV file
So how do we read from a CSV file?

First we open the file (in text mode) for reading (making sure we give open() the newline='' option).
Then we create a special type of object to access the CSV file. This is the reader object, which is defined in
the csv module, and which we create using the reader() function. The reader object is an iterable that
gives us access to each line of the CSV file as a list of fields. As the reader object is an iterable, we can
use next() directly on it to read the next line of the CSV file, or we can treat it like a list in a for loop to
read all the lines of the file (as lists of the file’s fields). When we’ve finished reading from the file we delete
the reader object and then close the file.

There are various options we can give the reader() function when we create the reader object to deal
with CSV files that use delimiters other than commas, that use padding or which quote some (or all) of their
fields. We’ll meet these options later. Note that normally the reader object returns the fields of the CSV file
to us as strings (regardless of what they actually contain), although there is an option we’ll meet later that
changes this behaviour.

So let’s try reading from a CSV file. Start an interactive Python 3 session (if you haven’t already) and type
the following:

!
Make sure that you are using Python 3 and not Python 2. On many systems
Python 2 is the default, so if you just type “python” at a Unix prompt, you will
probably get Python 2. To make sure you are using Python 3 type “python3” at
the Unix prompt:

$ python3

>>> import csv

>>> input_file = open('data1.csv', 'r', newline='')

>>> data = csv.reader(input_file)

>>> next(data)

['Adam Smith', '1723', '1790']

>>> del data

>>> input_file.close()

>>> del input_file

Of course, normally you would want to read more than just a single line of the file. Usually we will use a for
loop on the reader object to read each line of the CSV file in turn, as in the script csv1.py (shown below
(without any comments), and which can be found in the directory of files provided for this topic):

import csv

input_file = open('data1.csv', 'r', newline='')

data = csv.reader(input_file)

for line in data:

 [name, birth, death] = line

 print(name, 'was born in', birth, 'and died in', death)

del name, birth, death, line

del data

input_file.close()

7/15

del input_file

csv1.py


Exercise 2

(a) Look at the file data1.csv. Now run csv1.py and observe how it has read
each line of data1.csv, split it up into fields, and done something with each
field.

(b) Look at the file produce1.csv. Write a Python script that uses the csv
module to read each line of the file, and, for each line, print out, on a single
line on the screen, the first field, followed by a colon (:), followed by the total
of all the other fields on that line of the file, e.g. if the first two lines of the file
were:

apples,12,15,19
oranges,43,29,27

then the first two lines your script would print out would be:
apples: 46
oranges: 99

Writing a CSV file
Now that we know how to read from a CSV file, how do we write to one?

First we open the file (in text mode) for writing (making sure we give open() the newline='' option).
Then we create a special type of object to write to the CSV file. This is the writer object, which is defined in
the csv module, and which we create using the writer() function. The writer object has a method, the
writerow() method, that allows us to write a list of fields to the file. Note that the fields can be strings or
numbers (or a mixture of both); writerow() will convert them if necessary. Also, when using writerow()
you do not add a new line character (or other EOL indicator) to indicate the end of the line, writerow()
does it for you as necessary. As information (which you can happily ignore), writerow() returns the
number of characters it has written to the CSV file. Finally, when we are finished writing to the file, we delete
the writer object and close the file.

! Remember that it is only when the file is closed that the data we’ve written
is committed to the filesystem!

As with the reader() function, there are various options we can give the writer() function when we
create the writer object to deal with CSV files that use delimiters other than commas or which quote some
(or all) of their fields. We’ll meet these options later.

So let’s try writing to a CSV file. Type the following in an interactive Python 3 session:

>>> import csv

>>> output_file = open('output1.csv', 'w', newline='')

>>> data = csv.writer(output_file)

>>> data.writerow(['H', 'hydrogen', 1, 1.008])

20

>>> data.writerow(['He', 'helium', 2, 4.003])

19

>>> del data

>>> output_file.close()

8/15

>>> del output_file

Now look at the file you’ve created by typing the following at the Unix prompt (start a new instance of the
Unix shell and change to the directory with the newly created output1.csv file if necessary):

$ cat output1.csv

H,hydrogen,1,1.008

He,helium,2,4.003

$

Of course, normally you would want to write more than just one or two lines to a file. Usually we will use a
for loop on an iterable to write a whole set of lines to a CSV file, for example in the script csv2.py (part of
which is shown below, and which can be found in the directory of files provided for this topic):

import csv

symbol_to_properties = { … }

output_file = open('atomic_props.csv', 'w', newline='')

data = csv.writer(output_file)

for symbol in symbol_to_properties:

 (name, anum, boil) = symbol_to_properties[symbol]

 data.writerow([symbol, name, anum, boil])

del name, anum, boil, symbol

del data

output_file.close()

del output_file

csv2.py


Exercise 3

(a) Open the script csv2.py in a text editor and inspect it. Now run the script and
examine the file atomic_props.csv that it has produced.

(b) Complete the script exercise3b.py so that it writes out the contents of the
dictionary it contains to a CSV file using the csv module.

Delimiters and initial space
Thus far we have only read and written CSV files that use commas as delimiters. What do we do if we want
to use a different delimiter (as, for example, in data2.csv)?

The reader() and writer() functions take an optional parameter called delimiter which tells the
functions what delimiter the CSV file uses, and can be set to any single character string. By default (i.e. if you
do not set it) it is set to the comma (','), but you can set it to any single character you like. The most
common delimiters are the comma (','), the TAB ('\t') or a single space (' '). To set the delimiter you
give the reader() or writer() function an extra argument (delimiter=value, where value is a single

9/15

character string) after the file object associated with the CSV file, e.g.

>>> import csv

>>> input_file = open('data2.csv', 'r', newline='')

>>> data = csv.reader(input_file, delimiter='\t')

>>> next(data)

['Adam Smith', '1723', '1790']

(If you try the above example, make sure you del data and close() input_file when you are
finished.) Compare the above example with what happens if we try and read the data2.csv file without
specifying that the delimiter is a TAB:

>>> import csv

>>> input_file = open('data2.csv', 'r', newline='')

>>> data = csv.reader(input_file)

>>> next(data)

['Adam Smith\t1723\t1790']

Because we haven’t told the reader() function that the delimiter is a TAB, it expects the delimiter to be a
comma, and so treats the entire line as a single field (hence returning it to us as a single string). (Again, if
you try the above example, make sure you del data and close() input_file when you are finished.)

Now consider the file data3.csv. This fields in this file are separated by spaces. (In case you are
wondering how the csv module knows that “Adam Smith” is a single field, rather than two fields, “Adam”
and “Smith”, this is because, in data3.csv, “Adam Smith” appears in quotes ("Adam Smith"). We will
look at how the csv module handles quotes in the next section.) Let’s try reading from this file using the csv
module. We know the fields are separated by spaces so we use delimiter=' ':

>>> import csv

>>> input_file = open('data3.csv', 'r', newline='')

>>> data = csv.reader(input_file, delimiter=' ')

>>> next(data)

['Adam Smith', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '', '', '', '1723', '', '', '', '',
'', '', '1790']

(If you try the above example, make sure you del data and close() input_file when you are
finished.)

The output from next() is not what we might have hoped for. The problem is that in data3.csv there are
lots of spaces separating the fields (a variable number, in fact). Because we’ve told it the delimiter is a space,
the csv module thinks that each space separates two fields, so when it encounters two spaces in
succession, it treats this as an empty field and so gives us the empty string.

data3.csv is an example of a “fixed-width” data file, where each field is of a fixed size, and, if the actual
data in the field consists of fewer characters than the chosen size, then the field is padded with blanks. If you
print such files on the screen, all the data appears in nicely lined up columns, which looks nice, but they can
be a pain to import into some programs. So how do we deal with such files?

For situations like these, there is another optional parameter we can give to the reader() function, called
skipinitialspace. This is a Boolean value that defaults to False. If we set it to True, then any
“whitespace” (spaces, TABs, new line characters, etc.) immediately following the delimiter is ignored. (If it is
set to False then any whitespace is considered significant and will either be interpreted as part of a field or
as another delimiter (if the delimiter is set to a whitespace character).) We can make use of this optional
parameter to properly read data3.csv.

10/15

!
Note that if we are specifying several optional parameters to the reader() or
writer() functions, it doesn’t matter what order we give them in, so long as
they are listed after the file object (that we got by opening the CSV file) in the
arguments given to the function. So, for example:

d = csv.reader(f, delimiter=' ', skipinitialspace=True)

and:

d = csv.reader(f, skipinitialspace=True, delimiter=' ')

are equivalent.

Try the following in an interactive Python 3 session:

>>> import csv

>>> input_file = open('data3.csv', 'r', newline='')

>>> data = csv.reader(input_file, delimiter=' ', skipinitialspace=True)

>>> next(data)

['Adam Smith', '1723', '1790']

>>> del data

>>> input_file.close()

>>> del input_file

As you can see, that works much better.


Exercise 4

(a) Modify the exercise4a.py script so that it gets its data from the file
data3.csv instead of data1.csv. When you’ve finished, its output should
look identical to the output of the csv1.py script.

(b) Modify the exercise4b.py script so that it gets its data from the file
weird2.csv instead of data1.csv and prints each line of the weird2.csv
file out in this format:

SMITH, Adam: born 1723, died 1790.

Quoting
In the previous section, we saw that putting quotes around text had some significance for the csv module
(e.g. in data3.csv). How does this work, and can we change its behaviour if we need to?

Firstly, unlike the way Python in general uses single quotes and double quotes interchangeably to indicate
the start and end of a string, the csv module only recognises one character as the “quotation” character in a
CSV file. By default, this is the double quote character ("), but you can change it to be any single character
you want. You do this by setting the quotechar optional parameter when you call the reader() or
writer() function.

When reading a CSV file, any data surrounded by the character specified in quotechar is considered a
single field. This is particularly useful for fields which contain the delimiter (e.g. in data3.csv) or a new line
character (e.g. in weird4.csv). When writing a CSV file, any field that contains special characters, such as
the delimiter or a new line character, will be “quoted”, i.e. the character specified in quotechar will be put
immediately before and after the field when it is written to the CSV file.

Try the following in an interactive Python 3 session:

>>> import csv

>>> output_file = open('output2.csv', 'w', newline='')

>>> data = csv.writer(output_file)

11/15

>>> data.writerow(['SMITH, Adam', 1723])

20

>>> del data

>>> output_file.close()

>>>

>>> output_file = open('output3.csv', 'w', newline='')

>>> data = csv.writer(output_file, quotechar="'")

>>> data.writerow(['SMITH, Adam', 1723])

20

>>> del data

>>> output_file.close()

>>> del output_file

Now look at the files you’ve created by typing the following at the Unix prompt (start a new instance of the
Unix shell and change to the directory with the newly created output2.csv and output3.csv files if
necessary):

$ cat output2.csv

"SMITH, Adam",1723

$ cat output3.csv

'SMITH, Adam',1723

$

Note how the field containing “SMITH, Adam” is quoted (because it contains a comma, which is the
delimiter), and how, in output3.csv, single quotes are used for quoting instead of double quotes (because
we used quotechar="'" when we called the writer() function for that file).

You can also control when fields should be quoted when writing a CSV file, and, when reading a CSV file,
when quotes around a field should be recognised as quotes (rather than treated as part of the field). This is
done using the quoting optional parameter of the reader() and writer() functions. The values that the
quoting parameter accepts are stored as constants in the csv module. These constants, and their
meanings, are as follows:

QUOTE_ALL Makes writer objects quote all fields.

QUOTE_MINIMAL Makes writer objects only quote those fields which contain special
characters, such as the delimiter or a new line character. This is the
default.

QUOTE_NONNUMERIC Makes writer objects quote all non-numeric fields (i.e. fields whose data
cannot be represented as a number).
Makes reader objects convert all non-quoted fields to floats.

QUOTE_NONE Makes writer objects never quote fields3.
Makes reader objects do no special processing of quote characters, i.e.
any quote characters will be treated as part of the field.

As these constants are defined in the csv module, you would normally refer to them by prefixing them with
“csv.”.

3 This can cause problems if the field contains the delimiter; for further details on how the writer object
will try to deal with such situations, see the QUOTE_NONE entry in the csv module’s documentation:

http://docs.python.org/py3k/library/csv.html#csv.QUOTE_NONE

12/15

Try the following in an interactive Python 3 session:

>>> import csv

>>> input_file = open('data2.csv', 'r', newline='')

>>> data = csv.reader(input_file, delimiter='\t', quoting=csv.QUOTE_NONE)

>>> line = next(data)

>>> line

['"Adam Smith"', '1723', '1790']

>>> print(line[0])

"Adam Smith"

(Make sure you del data and close() input_file when you are finished.)

As you can see, by setting quoting to QUOTE_NONE we have caused the double quotes around “Adam
Smith” to be considered as part of the field rather than as an indicator that the field contains text.

Now try the following in an interactive Python 3 session:

>>> import csv

>>> input_file = open('weird1.csv', 'r', newline='')

>>> data = csv.reader(input_file, quoting=csv.QUOTE_NONNUMERIC)

>>> line = next(data)

>>> line

['SMITH, Adam', 1723.0, 1790.0]

>>> type(line[1])

<class 'float'>

(Make sure you del data and close() input_file when you are finished.)

By setting quoting to QUOTE_NONNUMERIC we have caused the non-text fields to be converted to floats.

And now type the following in an interactive Python 3 session:

>>> import csv

>>> output_file = open('output4.csv', 'w', newline='')

>>> data = csv.writer(output_file, quoting=csv.QUOTE_ALL)

>>> data.writerow(['H', 'hydrogen', 1, 1.008])

28

>>> data.writerow(['He', 'helium', 2, 4.003])

27

>>> del data

>>> output_file.close()

>>> del output_file

Now look at the file you’ve created by typing the following at the Unix prompt (start a new instance of the
Unix shell and change to the directory with the newly created output4.csv file if necessary):

13/15

$ cat output4.csv

"H","hydrogen","1","1.008"

"He","helium","2","4.003"

$

By setting quoting to QUOTE_ALL we have caused all fields to be quoted regardless of what sort of data
they contain.


Exercise 5

(a) Modify the exercise5a.py script so that it gets its data from the file
weird6.csv instead of data1.csv. When you’ve finished, its output should
look identical to the output of the csv1.py script.

(b) Complete the script exercise5b.py so that it writes out the contents of the
dictionary it contains to a CSV file using the csv module. In the CSV file the
script creates, fields should be separated from each other by a TAB, and the
data contained in each field should be preceded and followed by an asterisk
(*), regardless of the type of data in the field.

Dialects
As we have seen, there are a number of options4 we can give to the reader() and writer() functions to change
how they handle the CSV file. Whilst using these frequently will help you remember them, it is also the case
that if you have to use the same set of options frequently then it will get tedious having to specify them every
time. (And if you don’t use them frequently then you’ll probably have to look them up each time you do come
to use the csv module, which can also be irritating.) Wouldn’t it be great if there was a single setting you
could use for the most common sets of options?

The csv module has a number of built-in collections of settings for reading common types of CSV files.
These are called “dialects” and you specify them by using the dialect optional parameter of the
reader() and writer() functions. The two most useful dialects are:

excel This sets the various options to the appropriate values for the most usual
sort of Excel-generated CSV file. This is the default.

excel-tab This sets the various options to the appropriate values for the most usual
sort of Excel-generated TAB-delimited text file.

In Python 3.2 (but not earlier versions of Python 3) another built-in dialect was added:

unix This sets the various options to the appropriate values for the most usual
sort of CSV file generated on Unix systems. In particular5, it causes all
fields in the CSV file to be quoted.

You can also create your own dialects, but that’s beyond the scope of these notes; consult the csv module’s
documentation for further information about doing this:

http://docs.python.org/py3k/library/csv.html

Let’s try out one of these dialects. data2.csv is a TAB-delimited file created from a spreadsheet program,
so it would make sense to try the excel-tab dialect. For comparison purposes we’ll try first reading the file
without explicitly using any of the optional parameters. Type the following in an interactive Python 3 session:

4 And there are even more that we haven’t covered here because they aren’t used very often. For details of
all the options that the reader() and writer() functions accept, see the csv module’s documentation:

http://docs.python.org/py3k/library/csv.html#dialects-and-formatting-parameters
5 It also explicitly sets the EOL indicator to be the new line character ('\n'), which is not something we

usually need to worry about (which is why we haven’t covered how to explicitly set the EOL indicator in
these notes).

14/15

>>> import csv

>>> input_file = open('data2.csv', 'r', newline='')

>>> data = csv.reader(input_file)

>>> next(data)

['Adam Smith\t1723\t1790']

>>> del data

>>> input_file.close()

>>> del input_file

>>>

>>> input_file = open('data2.csv', 'r', newline='')

>>> data = csv.reader(input_file, dialect='excel-tab')

>>> next(data)

['Adam Smith', '1723', '1790']

(Make sure you del data and close() input_file when you are finished.)

As you can see, the excel-tab dialect works (and saves us having to remember what options we need to
set for this sort of file). Hurrah!

Final exercise
And we end with an exercise:


Exercise 6

(a) Look at the file produce2.csv. Write a Python script that uses the csv
module to read each line of the file, and, for each line, print out, on a single
line on the screen, the first field, followed by a colon (:), followed by the
second field multiplied by the total of all the other fields on that line of the file,
e.g. if the first two lines of the file were:

"apples" 0.5 12 15 19
"oranges" 0.7 43 29 27

then the first two lines your script would print out would be:
apples: 23.0
oranges: 69.3

(b) Modify the script you wrote in the previous part of this exercise, so that, as
well as printing to the screen, it also writes to a file named produce2.out
using the csv module. Each line of this file should contain three fields:

the first field from produce2.csv,
the total you calculated for that field, and
the total multiplied by the second field from produce2.csv.

The fields of produce2.out should be separated by TABs and each field
should be surrounded by single quotes.
So, if the first two lines of the produce2.csv were:

"apples" 0.5 12 15 19
"oranges" 0.7 43 29 27

then the first two lines of produce2.out would be:
'apples' '46' '23.0'
'oranges' '99' '69.3'

15/15

	Prerequisites
	Facilities for this session
	Notation
	Warnings
	Exercises
	Exercise 0

	Input and output
	Keys on the keyboard
	Content of files

	What’s in this course
	What is a CSV file?
	Exercise 1

	The Python csv module
	Opening files for use with the csv module

	Reading from a CSV file
	Exercise 2

	Writing a CSV file
	Exercise 3

	Delimiters and initial space
	Exercise 4
	Exercise 5

	Dialects
	Final exercise
	Exercise 6

