
Python 3: Argument parsing
Bob Dowling rjd4@cam.ac.uk

29 October 2012

Prerequisites
This self-paced course assumes that you have a knowledge of Python 3 equivalent to having completed one
or other of

• Python 3: Introduction for Absolute Beginners, or

• Python 3: Introduction for Those with Programming Experience

Some experience beyond these courses is always useful but no other course is assumed.

The course also assumes that you know how to use a Unix text editor (gedit, emacs, vi, …).

Facilities for this session
The computers in this room have been prepared for these self-paced courses. They are already logged in
with course IDs and have home directories specially prepared. Please do not log in under any other ID.

At the end of this session the home directories will be cleared. Any files you leave in them will be deleted.
Please copy any files you want to keep.

The home directories contain a number of subdirectories one for each topic.

For this topic please enter directory argparse. All work will be completed there:

$ cd argparse

$ pwd

/home/x250/argparse

$

These courses are held in a room with two demonstrators. If you get stuck or confused, or if you just have a
question raised by something you read, please ask!

These handouts and the prepared folders to go with them can be downloaded from
www.ucs.cam.ac.uk/docs/course-notes/unix-courses/pythontopics

The formal Python 3 documentation for the topics covered here can be found online at
docs.python.org/release/3.2.3/library/argparse.html

Table of Contents
Prerequisites.. 1
Facilities for this session.. 1

Notation.. 3
Warnings.. 3
Exercises... 3

Exercise 0.. 3
Input and output... 3
Keys on the keyboard.. 3
Content of files... 3
What’s in this course.. 4
Quick recap: The primitive command line..4

Exercise 1.. 4
Our target scripts... 4

Exercise 2.. 5
A script with no arguments at all.. 5

Exercise 3.. 7
Adding optional arguments.. 7

Exercise 4.. 9
Adding a “pure flag”... 10

Exercise 5.. 10
Adding a compulsory argument... 10

Exercise 6.. 11
Multiple positional arguments...11
File names as arguments... 12

Exercise 7.. 13
And that’s it!... 14

Exercise 8.. 14

2/14

Notation

Warnings

! Warnings are marked like this. These sections are used to highlight common
mistakes or misconceptions.

Exercises


Exercise 0

Exercises are marked like this. You are expected to complete all exercises. Some
of them do depend on previous exercises being successfully completed.
If you are stuck, please ask a demonstrator.

Input and output
Material appearing in a terminal is presented like this:

$ more lorem.txt
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
--More--(44%)

The material you type is presented like this: ls. (Bold face, typewriter font.)

The material the computer responds with is presented like this: “Lorem ipsum”. (Typewriter font again but in
a normal face.)

Keys on the keyboard
Keys on the keyboard will be shown as the symbol on the keyboard surrounded by square brackets, so the
“A key” will be written “[A]”. Note that the return key (pressed at the end of every line of commands) is written
“[]”, the shift key as “[]”, and the tab key as “[]”. Pressing more than one key at the same time (such as ↲ ⇧ ↹
pressing the shift key down while pressing the A key) will be written as “[]+[A]”. Note that pressing [A] ⇧
generates the lower case letter “a”. To get the upper case letter “A” you need to press []+[A].⇧

Content of files
The content1 of files (with a comment) will be shown like this:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. This is a comment about the line.

1 The example text here is the famous “lorem ipsum” dummy text used in the printing and typesetting
industry. It dates back to the 1500s. See http://www.lipsum.com/ for more information.

3/14

What’s in this course

1. A quick recap of the primitive command line

2. Our target scripts

3. A script with no arguments at all

4. Adding optional arguments

5. Adding repeated arguments

6. Adding a compulsory argument

7. Files as arguments

Quick recap: The primitive command line
It never hurts to recap what we know already. The sys module contains a member sys.argv which is a list
containing the command line arguments passed to the Python command.


Exercise 1

Check that you can understand and run the script args.py in your directory:
$ python3 args.py alpha beta gamma

['args.py', 'alpha', 'beta', 'gamma']

$ python3 args.py 1 2 3

['args.py', '1', '2', '3']

$

! Note that all the arguments are presented as strings.

Our target scripts
We want a script that processes the command line with the same power as a “real” Unix application. The
specific features we want from our command line parser are support for:

• short form options such as “-a” or “-b” which can be combined as “-ab”.

• long form options such as “--alpha” or “--beta”.

• values set with or without equals signs: “--alpha foo” should be the same as “--alpha=foo”

• automatic conversion of types

• “--help” or “-h” giving help on the other options

• command line arguments without any “-a” or
“--alpha” elements

To help introduce (at least some of) these features it
will help to have a concrete example in mind. The
script l0issajous.py creates a graph of a Lissajous
figure, based on arguments passed to it on the
command line.

4/14

The graph shown, for example, was generated by

$ python3 lissajous.py --xfreq 2 --yfreq 3 --title='Lissajous 3:2' graph.png

We are not going to address the creation of the graph in this topic. See the Python graphics topic for that. We
are going to learn how to process that command line. Note that both of the following command lines would
have been exactly equivalent:

$ python3 lissajous.py -x 2 -y 3 -t 'Lissajous 3:2' graph.png

$ python3 lissajous.py --xfreq=2 --yfreq=3 --title 'Lissajous 3:2' graph.png

Also note that the script generates help on request

$ python3 lissajous.py --help

usage: lissajous.py [-h] [-n n] [-x a] [-y b] [-p c] [-t title] fname

Plot a graph of x=sin(at), y=sin(bt+c), with graph title provided by the user.

positional arguments:
fname File name for graph (required)

optional arguments:
-h, --help show this help message and exit
-n n, --npts n Number of points to plot
-x a, --xfreq a Frequency of the x-oscillation

 -y b, --yfreq b Frequency of the y-oscillation
-p c, --phase c Phase difference between the x- and y-oscillations

measured in radians
-t title, --title title

Title of graph

Author: Bob Dowling <rjd4@cam.ac.uk>

and arguably useful error messages if your command line makes no sense to it:

$ python3 lissajous.py --xfreq two --yfreq 3 --title='Lissajous 3:2' graph.png

usage: lissajous.py [-h] [-n n] [-x a] [-y b] [-p c] [-t title] fname
lissajous.py: error: argument -x/--xfreq: invalid float value: 'two'

All of the help information and the error message shown are produced by the command line parser.


Exercise 2

Try out the lissajous.py script with a variety of command line arguments,
some correct, some incorrect.

The lissajous.py script can act as your guide during this topic. You will be creating a different script that
plots Chebyschev polynomials. (Don't worry. We will provide the maths and graphics; you will only have to
provide the command line parsing.)

A script with no arguments at all
We will start with the bare minimum: a script with no arguments at all: example01.py.

The script starts by importing the argparse module:

import argparse

Then it creates the “argument parser” object which will do the hard work of processing the command line:

parser = argparse.ArgumentParser()

5/14

Then it uses that object to parse the command line. It places the results of that parsing in an object named
“arguments” which, for the time being, it simply prints:

arguments = parser.parse_args()

print(arguments)

This demonstrates that the arguments returned is a Python “Namespace”:

$ python3 example01.py

Namespace()

A namespace is, essentially, a blank object waiting to have some attributes added to it. This one is empty.

Our script, however, is still capable of providing help:

$ python3 example01.py --help
usage: example01.py [-h]

optional arguments:
 -h, --help show this help message and exit

This output is generated by the parse_args() method. If it generates help text it stops execution at that
point; the print() statement is not reached.

The script now explicitly rejects any command line argument. The parser must know about everything legal
and it rejects everything else as illegal:

$ python3 example01.py --foo
usage: example01.py [-h]
example01.py: error: unrecognized arguments: --foo

$ python3 example01.py thing
usage: example01.py [-h]
example01.py: error: unrecognized arguments: thing

$

All of this is automatically generated. Obviously we want to add to it, both by providing some help text about
what the program does and by adding some legal command line arguments.

We start with the additional text, both in front of the automatically generated output and after it.

The text in front is typically a brief description of what the program does and is almost always present. The
argparse module refers to this text as the “description” in expectation of this usage.

The text afterwards is most commonly an authorship or contact tag and is often omitted. The argparse
module gives it the more neutral name of the “epilogue” (albeit with an American spelling).

The two pieces of text are specified when the parser is created:

help_text = 'Plot a graph of x=sin(at), y=sin(bt+c), with a graph title.'

sign_off = 'Author: Bob Dowling <rjd4@cam.ac.uk>'

parser = argparse.ArgumentParser(description=help_text, epilog=sign_off)

The file example02.py has this extra functionality. Note how this augments the help output:

6/14

$ python3 example02.py --help
usage: example02.py [-h]

Plot a graph of x=sin(at), y=sin(bt+c), with a graph title.

optional arguments:
 -h, --help show this help message and exit

Author: Bob Dowling <rjd4@cam.ac.uk>

And now it is your turn:


Exercise 3

Create a script, exercise03.py, with help text as shown. Identify yourself as
the author, not Bob Dowling!
$ python3 exercise03.py --help
usage: exercise03.py [-h]

Plot graphs of the Chebyshev polynomials of orders M to N
for values between -X and +X.

optional arguments:
 -h, --help show this help message and exit

Author: Bob Dowling <rjd4@cam.ac.uk>

You can base your exercise03.py script on example02.py.

Adding optional arguments
Our worked example that generates Lissajous figures takes a number of optional arguments, illustrated by
the help output:

optional arguments:
-h, --help show this help message and exit
-n n, --npts n Number of points to plot
-x a, --xfreq a Frequency of the x-oscillation

 -y b, --yfreq b Frequency of the y-oscillation
-p c, --phase c Phase difference between the x- and y-oscillations

measured in radians
-t title, --title title

Title of graph

We will consider one of these to establish our vocabulary:

-x a, --xfreq a Frequency of the x-oscillation

-x the short format flag
--xfreq the long format flag
a the “metavariable” name
Frequency of… the help text

(The “metavariable” is the letter or word used to refer to the value corresponding to the flag in the text
generated. It will have no other effect.)

We will now go through the process of telling the parser that it should recognise this optional argument and
its corresponding value. To do this we need to specify a little more about the value it will take.

We need to give it a name in the arguments object (as opposed to the name in the help text). The argument
parser can make a name up based on the long format flag and would call it “arguments.xfreq” in our
example but it is better practice to name it explicitly. We call this its “destination”.

We need to tell the argument parser what to do with the option. In the case of “--xfreq” we expect the flag
to be followed by a value which we want stored. This is called the “action” and storing a value is the default
action but in this example we will be explicit.

7/14

There are alternative actions. For example the flag might not take any values but might be repeated. We
would want to count the number of repeats. We will meet these alternative actions later.

We also need to specify what Python type that value ought to be. To specify the type we pass the name of
the type itself. What is happening internally is that the parser needs a function that will convert a string (as
given to it by the command line) into the type we actually want. Every type in Python has a function named
after it that takes a string and creates a value of that type from it (int(), str(), float() etc.)We are
passing that function in as an argument to the parser.

Finally, we need to specify a value that this argument will take if the user does not specify one. This is called
the “default value”.

This gives us three more things we will need to specify:

destination The name of the variable in the arguments object.
action What to do with this flag (e.g. expect a value and to store it).
type What type that value should be.
default What value to use if the user doesn’t specify one.

The file example03.py has the extra stage to add the “--xfreq” option to the parser. This is not done at
parser creation (argparse.ArgumentParser()) but afterwards — typically immediately afterwards —
using a method of the parser, parser.add_argument():

parser = argparse.ArgumentParser(description=help_text, epilog=sign_off)

parser.add_argument(

 '--xfreq',

 '-x',

 dest='xfreq',

 action='store',

 type=float,

 default=1.0,

 help='Frequency of the x-oscillation',

 metavar='a'

)

arguments = parser.parse_args()

We can now use this attribute and receive help on it.

For example, our help now knows about it:

$ python3 example03.py --help
usage: example03.py [-h] [--xfreq a]

Plot a graph of x=sin(at), y=sin(bt+c), with a graph title.

optional arguments:
 -h, --help show this help message and exit
 --xfreq a, -x a Frequency of the x-oscillation

Author: Bob Dowling <rjd4@cam.ac.uk>

We can also use the option to set a value:

$ python3 example03.py --xfreq 2.0
Namespace(xfreq=2.0)

$ python3 example03.py --xfreq=3.0
Namespace(xfreq=3.0)

And we can see the default taking effect:

8/14

$ python3 example03.py
Namespace(xfreq=1.0)

We also need to see how to get into this “namespace” object. That’s easy:

arguments = parser.parse_args()

print(arguments)

print(arguments.xfreq)

You can see this in example04.py:

$ python3 example04.py --xfreq=4.0

Namespace(xfreq=4.0)

4.0

The name that follows the dot is the name specified as the destination by the dest=… keyword.

The script example05.py has all the options added.

Note that because we told the argument parser what the type of the value should be it can produce the error
messages for us if the text passed is invalid:

$ python3 example05.py --yfreq TWO graph.png
usage: example05.py [-h] [-n n] [-x a] [-y b] [-p c] [-t title] fname
example05.py: error: argument -y/--yfreq: invalid float value: 'TWO'

And now it is your turn:


Exercise 4

Copy your script, exercise03.py, to exercise04.py and update that script to
support the optional arguments (all to be stored) shown in this table:
-x --limit float 1.0 limit X Range of values of x
-m --lower int 1 lower M1 Minimum order of

polynomial
-n --upper int 3 upper M2 Maximum order of

polynomial
-k --npts int 512 npts N Number of points to plot
-t --title str '' title T Title of graph

The script should run like this:
$ python exercise04.py

Namespace(limit=1.0, max=3, min=1, npts=512, title='')

$ python exercise04.py --help

usage: exercise04.py [-h] [-k k] [-x X] [-m M] [-n N]
[-t title]

Plot graphs of the Chebyshev polynomials of orders M to N
for values between -X and +X.

optional arguments:
 -h, --help show this help message and exit
 -k k, --npts k Number of points to plot
 -x X, --limit X Range of values of x.
 -m M1,--min M1 Minimum order of polynomial.
 -n M2,--max M2 Maximum order of polynomial.
 -t title, --title title
 Title of graph

Author: Bob Dowling <rjd4@cam.ac.uk>

9/14

! Don’t try to reset the “-h” or “--help” flags.
You can do it, but it will only end in tears.

Adding a “pure flag”
There is a difference between --xfreq and --help. The former requires an argument after it and the latter
doesn’t. How do we add flags like --help, --debug or --verbose that take no further arguments?

There is no corresponding value to store, so the “action=store” parameter setting is clearly false. Instead
we set “action=count”. Instead of storing a user-given value in arguments, this action causes argparse
to store a count of how often the flag appears. So a command line with “--verbose --verbose” would
store a value of 2. The file example06.py has nothing but a verbosity flag:

$ python3 example06.py -vvv
Namespace(verbosity=3)

$ python3 example06.py --verbose --verbose
Namespace(verbosity=2)

$ python3 example06.py
Namespace(verbosity=0)


Exercise 5

Copy your script, exercise04.py, to exercise05.py and update that script to
support a verbosity flag.

Adding a compulsory argument
To date we have been adding optional arguments; each of them has had a default value to use if the user
didn’t specify one. Optional arguments are passed with one of these -x/--xfreq flags. Compulsory
arguments are typically passed unadorned. Both the worked example and your exercise take a file name as
a compulsory argument. For a single, simple compulsory argument this is just a case of omitting the flags:

parser.add_argument(

 dest='filename',

 action='store',

 type=str,

 help='File name for graph (required)',

 metavar='fname'

)

Because there are no flags specified this is known as a “positional” argument, defined by its position in the
command line, rather than by any associated flag:

10/14

$ python3 example07.py --help
usage: example05.py [-h] [-n n] [-x a] [-y b] [-p c] [-t title] fname

Plot a graph of x=sin(at), y=sin(bt+c), with graph title provided by the user.

positional arguments:
 fname File name for graph (required)

optional arguments:
 -h, --help show this help message and exit
 -n n, --npts n Number of points to plot
 -x a, --xfreq a Frequency of the x-oscillation
 -y b, --yfreq b Frequency of the y-oscillation
 -p c, --phase c Phase difference between the x- and y-oscillations
 measured in radians
 -t title, --title title
 Title of graph

Author: Bob Dowling <rjd4@cam.ac.uk>

The argparse module makes all positional arguments compulsory unless we override it (which we will do
later). There is, therefore, no point in specifying a default value.

The order of the optional arguments in the help is dictated by the order of their add_argument() calls.
Positional arguments are always placed at the end, regardless.


Exercise 6

Copy your script, exercise05.py, to exercise06.py and update that script to
require a file name as its final argument.

Multiple positional arguments
There is a rather crude file copying program in example06.py. It requires an input and output file name
simply by adding two positional arguments with add_argument():

parser.add_argument(
 dest='source',
 type=str,
 metavar='src',
 help='Source file name'
)

parser.add_argument(
 dest='target',
 type=str,
 metavar='tgt',
 help='Target file name'
)

This is crude, but effective. The more common case is to have a number of positional arguments but not to
know in advance how many and for this circumstance this crude approach doesn’t work.

To take a simple example, suppose we required a list of zero or more file names so that the program could
run line/word/character counting statistics on all of them.

To tell add_arguments() that it should expect a number of arguments we add a parameter, “nargs”
(pronounced “en-args”), and tell it how many to expect.

11/14

! The mere presence of the nargs parameter means that the value stored in
arguments will be a list, even if only one value is returned.

The most common value for the nargs parameter is the character “*” which means “zero or more”:

parser.add_argument(
 dest='filenames',
 type=str,
 action='store',
 nargs='*',
 help='Names of files to be analyzed.'
)

Note that the type is the type of the items in the list:

$ python3 example08.py *.py
Namespace(filenames=['example01.py', 'example02.py', 'example03.py',
'example04.py', 'example05.py', 'example06.py', 'example07.py',
'example08.py', 'exampleNN.py', 'exercise03.py', 'exercise04.py',
'exercise.py', 'lissajous.py'])

(The file example09.py actually runs the statistics.)

Also note that it is perfectly happy with no arguments at all:

$ python3 example08.py
Namespace(filenames=[])

List arguments like this automatically default to the empty list so no default parameter is needed in
add_arguments().

The nargs parameter can take other values. If it is given an integer value then it requires precisely that
many arguments. There are also other single character values it can take:

'*' Zero or more values. (The usual.)
'+' One or more values. (Not uncommon.)
'?' Zero or one value. (Rare.)
5 Exactly five values. (For any value of five.)
1 Exactly one value.

(NB: Because nargs is set it will be a list of one value, not just the value.)
argparse.
REMAINDER

All the remaining values, if any.

File names as arguments
Earlier we noted in passing that because we told the argument parser the expected types of values it could
do the sanity checking of the command line arguments for us. We can take this a step further with file
names. We can get the argument parser to check that a file exists and can be read if we want to read it or
even open it for us and pass the Python file object as the value. Similarly if we want a file name to open for
writing we can get the argument parser to open it for us and pass us back the file object. In both cases we
can leave the error reporting to the parser.

What would this look like in practice?

We would change our compulsory argument definition to look like the following:

parser.add_argument(

 dest='file',

 action='store',

 type=argparse.FileType('wb'),

12/14

 help='File name for graph (required)',

 metavar='fname'

)

Note the exotic-looking type=argparse.FileType('wb'). That is the only change we have made and is
the difference between example05.py and example10.py. This type means that the argument should be
opened as a binary file for writing. The argument to argparse.FileType() is the mode string that gets
passed to the open() function.

The object stored in arguments is the open file object:

$ python3 example10.py graph.png

Namespace(file=<_io.BufferedWriter name='graph.png'>, npts=512, phase=0.0,
title='', xfreq=1.0, yfreq=1.0)

It also means that if the file can’t be opened for writing for whatever reason the parser will handle the error
for you:

$ python3 example10.py /etc/motd

usage: example10.py [-h] [-n n] [-x a] [-y b] [-p c] [-t title] fname

example10.py: error: argument fname: can't open '/etc/motd':
[Errno 13] Permission denied: '/etc/motd'

Note that the file will be created (or overwritten and truncated) just by parsing the command line:

$ ls -l graph.png

ls: cannot access graph.png: No such file or directory

$ python3 example10.py graph.png

Namespace(file=<_io.BufferedWriter name='graph.png'>, npts=512, phase=0.0,
title='', xfreq=1.0, yfreq=1.0)

$ ls -l graph.png

-rwx------ 1 rjd4 rjd4 0 Oct 4 17:29 graph.png

$

!
The argument parser will open the file for you. The onus is still on you to close it
again when you are done with it:

arguments.file.close()

Is it a good idea to get the argument parser to do this for you? Should you do it yourself?

If you are doing something “clever” that might mean that you wouldn’t open the files under certain
circumstances then you must do it yourself. If you just want them opened and errors handled consistently
and cleanly then leave it to the argument parser. Don’t reinvent the wheel.


Exercise 7

Copy your script, exercise06.py, to exercise07.py and update that script to
open the file for writing as part of the parsing.

13/14

And that’s it!
You now know enough to write a very powerful parsing of the command line.

The file example11.py has exactly the same parsing as example10.py (though written a little more
compactly) and is a fully functional script. Try it out!


Exercise 8

The script, exercise08.py, contains all the Python to create graphs of the
Chebyshev polynomials. Copying the parsing lines from your exercise07.py to
the top of the script should be all it takes to make it a fully functional script.

Is it more trouble than it’s worth to write a fully-fledged command line parser?

Once you get used to the module it does not take too much time to write the lines of Python. It also makes
your script vastly easier for other people to use. No academics work in isolation today. If you write a script
that even you use more than once or twice the chances are that you will have to share it with a colleague.
They will be grateful if you make it easy to use, and may even return the favour when they lend you one of
theirs.

Good luck!

14/14

	Prerequisites
	Facilities for this session
	Notation
	Warnings
	Exercises
	Exercise 0

	Input and output
	Keys on the keyboard
	Content of files
	What’s in this course
	Quick recap: The primitive command line
	Exercise 1

	Our target scripts
	Exercise 2

	A script with no arguments at all
	Exercise 3

	Adding optional arguments
	Exercise 4

	Adding a “pure flag”
	Exercise 5

	Adding a compulsory argument
	Exercise 6

	Multiple positional arguments
	File names as arguments
	Exercise 7

	And that’s it!
	Exercise 8

