
1

Simple Shell Scripting for
Scientists

Julian King
Bruce Beckles

University of Cambridge Computing Service

Appendix

2

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 2

Common Unix commands

The following slides provide a
summary of the Unix commands
used in the �Simple Shell Scripting
for Scientists� course.

For details of the �Unix: Simple Shell Scripting for Scientists�
course, see:

http://training.csx.cam.ac.uk/course/scriptsci

3

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 3

Appendix: Unix commands (1)
basename return the filename from a file

path, removing the given
ending (if specified)

$ basename /usr/bin/python
python
$ basename ~/hello.sh .sh
hello

dirname return the directory name
from a file path

$ dirname /usr/bin/python
/usr/bin

If you have a path to a file, dirname will give you just the directory,
removing the actual filename whilst basename will give you the filename,
removing the directory path. basename can also remove the endings of
filenames.

If you need to do more advanced filename (or file) manipulation, then you
should look at the find and xargs commands. The find command is
covered in the �Unix Systems: Further Commands� course, the notes for
which are available here:

http://www-uxsup.csx.cam.ac.uk/courses/Commands/

The find command searches for files in a directory tree, and having
found the specified files, can run a command on each file.

The xargs command builds a command line from a combination of values
read from standard input and arguments specified on the command line,
and then executes that command line a certain number of times. You can
find out more about xargs from its man page:

man xargs

4

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 4

Appendix: Unix commands (2)
cat Display contents of a file
$ cat /etc/motd

Welcome to PWF Linux 2009/2010.

If you have any problems, please email Help-Desk@ucs.cam.ac.uk.

cd change directory
$ cd /tmp
$ cd

chmod change the mode (permissions) of
a file or directory

$ chmod a+r treasure.txt

If you give the cd command without specifying a directory then it
will change the directory to your home directory (the location of
this directory is specified in the HOME environment variable).

The chmod command changes the permissions of a file or
directory (in this context, the jargon word for �permissions� is
�mode�). For instance, the above example gives read access to
the file treasure.txt for all users on the system. Unix
permissions were covered in the �Unix: Introduction to the
Command Line Interface� course, see:

http://training.csx.cam.ac.uk/course/unixintro1

The notes from this course are available on-line at:

http://www-uxsup.csx.cam.ac.uk/courses/UnixCLI/

5

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 5

Appendix: Unix commands (3)
cp copy files and/or directories
$ cp /etc/motd /tmp/motd-copy
Options:
-p preserve (where possible) files� owner, permissions

and date
-f if unable to overwrite destination file, delete it and try

again, i.e. forcibly overwrite destination files
-R copy any directories Recursively, i.e. copy their

contents
-i prompt before overwriting anything (be interactive �

ask the user)
$ cp �p /etc/motd /tmp/motd-copy

Note that the cp command has many other options than the
four listed above, but those are the options that will be most
useful to us in this course.

6

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 6

Appendix: Unix commands (4)
date display/set system date and time
$ date

Wed Nov 11 11:52:03 GMT 2009

echo display text
$ echo "Hello"

Hello

env With no arguments, display
environment variables

Please note that if you try out the date command, you will
get a different date and time to that shown on this slide
(unless your computer�s clock is wrong or you have fallen
into a worm-hole in the space-time continuum). Also, note
that usually only the system administrator can use date to
set the system date and time.

Note that the echo command has a few useful options, but
we won�t be making use of them today, so they aren�t listed.

Note also that the env command is a very powerful
command, but we will not have occasion to use for anything
other than displaying environment variables, so we don�t
discuss its other uses.

7

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 7

Appendix: Unix commands (5)
grep find lines in a file that match a given

pattern
$ grep 'PWF' /etc/motd

Welcome to PWF Linux 2009/2010.

Options:
-i search case insensitively
-w only match whole words, not parts of words

$ grep 'pwf' /etc/motd

$ grep -i 'pwf' /etc/motd

Welcome to PWF Linux 2009/2010.

The patterns that the grep command uses to find text in
files are called regular expressions. We won�t be covering
these in this course, but if you are interested, or if you need
to find particular pieces of text amongst a collection of text,
then you may wish to attend the CS �Pattern Matching
Using Regular Expressions� course, details of which are
given here:

http://training.csx.cam.ac.uk/course/regex

Note that the grep command has many, many other
options than the two listed above, but we won�t be using
them in this course.

8

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 8

Appendix: Unix commands (6)
ln create a link between files (almost always used with

the -s option for creating symbolic links)
Options:
-f forcibly remove destination files (if they exist)
-i prompt before removing anything (be interactive �

ask the user)
-s make symbolic links rather than a hard links

$ ln �s /etc/motd /tmp/motd
$ cat /etc/motd
Welcome to PWF Linux 2009/2010.

If you have any problems, please email Help-Desk@ucs.cam.ac.uk.

$ cat /tmp/motd
Welcome to PWF Linux 2009/2010.

If you have any problems, please email Help-Desk@ucs.cam.ac.uk.

The ln command creates links between files. (Note that it has other
options besides those listed above, but we won�t be using them in this
course.) In the example above, we create a symbolic link to the file motd
in /etc and then use cat to display both the original file and the
symbolic link we�ve created. We see that they are identical.

There are two sort of links: symbolic links (also called soft links or symlinks) and hard
links. A symbolic link is similar to a shortcut in the Microsoft Windows operating
system (if you are familiar with those) � essentially, a symbolic link points to another
file elsewhere on the system. When you try and access the contents of a symbolic
link, you actually get the contents of the file to which that symbolic link points.
Whereas a symbolic link points to another file on the system, a hard link points to
actual data held on the filesystem. These days almost no one uses ln to create
hard links, and on many systems this can only be done by the system administrator.
If you want a more detailed explanation of symbolic links and hard links, see the
following Wikipedia articles:

http://en.wikipedia.org/wiki/Symbolic_link

http://en.wikipedia.org/wiki/Hard_link

9

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 9

Appendix: Unix commands (7)
ls list the contents of a directory
$ ls
answers Desktop gnuplot iterator source
bin examples hello.sh scripts treasure.txt

Options:
-d List directory name instead of its contents
-l use a long listing that gives lots of

information about each directory entry
-R list subdirectories Recursively, i.e. list their

contents and the contents of any
subdirectories within them, etc

If you try out the ls command, please note that its output
may not exactly match what is shown on this slide � in
particular, the colours may be slightly different shades and
there may be additional files and/or directories shown.

Note also that the ls command has many, many more
options than the three given on this slide, but these three
are the options that will be of most use to us in this course.

10

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 10

Appendix: Unix commands (8)
less Display a file one screenful of text at a time
more Display a file one screenful of text at a time
$ more treasure.txt
The Project Gutenberg EBook of Treasure Island, by Robert Louis Stevenson

This eBook is for the use of anyone anywhere at no cost and with

almost no restrictions whatsoever. You may copy it, give it away or

re-use it under the terms of the Project Gutenberg License included

with this eBook or online at www.gutenberg.org

Title: Treasure Island

Author: Robert Louis Stevenson

Release Date: February 25, 2006 [EBook #120]

Language: English

Character set encoding: ASCII

*** START OF THIS PROJECT GUTENBERG EBOOK TREASURE ISLAND ***

--More--(0%)

(Note that the output of the more command may not exactly match that
shown on this slide � in particular, the number of lines displayed before the
�--More--(0%)� message depends on the number of lines it takes to fill up
the window in which you are running the more command.)

The more and less commands basically do the same thing: display a file
one screenful of text at a time. Indeed, on some Linux systems the more
command is actually just another name (an alias) for the less command.

Why are there two commands that do the same thing? On the original Unix
systems, the less command didn�t exist � the command to display a file one
screenful of text at a time was more. However, the original more command
was somewhat limited, so someone wrote a better version and called it
less. These days the more command is a bit more sophisticated, although
the less command is still much more powerful.

For everyday usage though, many users find the two commands are
equivalent. Use whichever one you feel most comfortable with, but
remember that every Unix/Linux system should have the more command,
whereas some (especially older Unix systems) may not have the less
command.

11

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 11

Appendix: Unix commands (9)
man Display the on-line reference manual for a

command
$ man bash
BASH(1) BASH(1)

NAME

bash - GNU Bourne-Again SHell

SYNOPSIS

bash [options] [file]

COPYRIGHT

Bash is Copyright (C) 1989-2005 by the Free Software Foundation, Inc.

DESCRIPTION

Bash is an sh-compatible command language interpreter that executes

commands read from the standard input or from a file. Bash also incor-

porates useful features from the Korn and C shells (ksh and csh).

Bash is intended to be a conformant implementation of the Shell and

Utilities portion of the IEEE POSIX specification (IEEE Standard

1003.1). Bash can be configured to be POSIX-conformant by default.

OPTIONS

Manual page bash(1) line 1

(Note that the output of the man command may not exactly match
that shown on this slide � in particular, the number of lines
displayed before the � Manual page bash(1) line 1�
message depends on the number of lines it takes to fill up the
window in which you are running the man command.)

The man command displays the on-line reference manual for a
command. Such manuals are called �man pages�. Whilst not all
commands have man pages, many do, and, in particular, most of
the Unix commands we use in this course do.
The man command has the functionality of the more command
built into it so that it can display the man page one screenful of
text at a time. To advance a screen, press the space bar. To go
back a screen type �b�, and to quit man press the �Q� key.

12

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 12

Appendix: Unix commands (10)
mkdir make directories
$ mkdir /tmp/mydir
Options:
-p make any parent directories as required;

also if directory already exists, don�t
consider this an error

$ mkdir /tmp/mydir
mkdir: cannot create directory `/tmp/mydir': File exists

$ mkdir �p /tmp/mydir
$

Note that the mkdir command has other options, but we won�t
be using them in this course.

13

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 13

Appendix: Unix commands (11)
mktemp safely makes temporary files or

directories for you
$ mktemp
/tmp/tmp.fmsAr17215

Options:
-d make a directory instead of a file (by

default mktemp creates files)
-t make file or directory in a temporary

directory (usually /tmp)
$ mktemp -t -d iterator.XXXXXXXXXX
/tmp/iterator.khhcE30735

The mktemp command is an extremely useful command that allows users to
safely create temporary files or directories on multi-user systems. It is very
easy to unsafely create a temporary file or directory to work with from a shell
script, and, indeed, if your shell script tries to create its own temporary files or
directories using the normal Unix commands then it is almost certainly doing so
unsafely. Use the mktemp command instead.

Note that if you try the examples above you will almost certainly get files and
directories with different names created for you.

Note also that mktemp has more options than the two listed above, but we
won�t be using them in this course. Note also that if you use a version of
mktemp earlier than version 1.3 (or a version derived from BSD, such as that
shipped with MacOS X) then you can�t use the -t option, and will have to
specify /tmp (or another temporary directory) explicitly, e.g.

mktemp -d /tmp/iterator.XXXXXXXXXX

How do you use mktemp? You give it a �template� which consists of a name
with some number of X�s appended to it (note that is an UPPER CASE letter
X), e.g. iterator.XXXXX. mktemp then replaces the X�s with random letters
and numbers to make the name unique and creates the requested file or
directory. It outputs the name of the file or directory it has created.

14

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 14

Appendix: Unix commands (12)
mv move or rename files and directories
$ mv /tmp/motd-copy /tmp/junk

Options:
-f do not prompt before overwriting files or

directories, i.e. forcibly move or rename the
file or directory; this is the default behaviour

-i prompt before overwriting files or directories
(be interactive � ask the user)

-v show what is being done (be verbose)

Note that the mv command has other options, but we
won�t be using them in this course. Note also that if you
move a file or directory between different filesystems, mv
actually copies the file or directory to the other filesystem
and then deletes the original.

15

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 15

Appendix: Unix commands (13)
pwd print full path of current working

directory
$ cd /tmp
$ pwd
/tmp

Options:
-P print the full Physical path of the current

working directory (i.e. the path printed will
not contain any symbolic links)

Note that the pwd command has another option, but we won�t be
using it in this course.

16

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 16

Appendix: Unix commands (14)
rm remove files or directories
$ rm /tmp/junk

Options:
-f ignore non-existent files and do not ever

prompt before removing files or directories, i.e.
forcibly remove the file or directory

-i prompt before removing files or directories (be
interactive � ask the user)

--preserve-root do not act recursively on /
-R remove subdirectories (if any) Recursively, i.e.

remove subdirectories and their contents
-v show what is being done (be verbose)

Note that the rm command has other options, but we won�t be
using them in this course.

17

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 17

Appendix: Unix commands (15)
rmdir remove empty directories
$ rmdir /tmp/mydir

touch change the timestamp of a file;
if the file doesn�t exist create it
with the specified timestamp
(the default timestamp is the
current date and time)

$ touch /tmp/nowfile

The rmdir and touch commands have various options
but we won�t be using them on this course. If you try out
the touch command with the example above, check that
it has really worked the way we�ve described here by
using the ls command as follows:

ls -l /tmp/nowfile

You should see that the file nowfile has a timestamp of
the current time and date.

18

escience-support@ucs.cam.ac.uk Simple Shell Scripting for Scientists: Appendix 18

Appendix: Unix commands (16)
true do nothing, successfully
$ true

$ echo "${?}"

0

false do nothing, unsuccessfully
$ false

$ echo "${?}"

1

true does nothing and always succeeds, i.e. its exit status of 0.

false does nothing and always fails, i.e. its exit status is non-zero.

The most obvious use of these commands is for debugging: suppose
you have a script that runs a program that take a long time, and you
want to test the script to make sure it works. You could replace the
program that takes a long time with true to see what your script does
if it thinks the program has succeeded. Similarly, you could replace
the program your script is calling with false if you want to see what
your script will do if it thinks the program has failed.

Another use for true is when you want the shell to do nothing (this is
known as a NOP or no-op command): for instance, shell functions,
for and while loops, and if statements must contain at least one
command. If, for some reason, you want a shell function or a for
loop, while loop, or if statement that does nothing (maybe because
you haven�t gotten around to writing it yet but you want to be able to
test the rest of your script) you can use true. Then the shell won�t
complain about the definition of your function or the syntax of your loop
or if statement being incorrect, but they won�t actually do anything.

