
Utilizing OpenStack Infrastructure for
Research Storage Services

Paul Browne <pfb29@cam.ac.uk>

Generic L4 TProxy Stack

Not all users of the storage services will be pre-existing users of
HPC services, so there is a need for alternative access
mechanisms.

Access requirements:
● RDS and RCS has a requirement for access over SSH-using

applications
● RFS/IFS has a requirement for access over SMB/CIFS

A standard load-balancer and transparent proxy stack can be
applied to both services to expose them over the CUDN, and
made HA inside the OpenStack environment.

Orchestration RHEL base OS Version control / Config management

OpenStack IaaS

Generic L4 TProxy Stack

TProxy kernel module

HAProxy can run as a proxy/load-balancer in either L4 (TCP/IP) or L7 (HTTP) mode.
● Munging of traffic flow and HTTP header manipulation at L7 is a standard use case.
● TLS termination and offload at network edge, rich filtering and access control lists, etc

This kind of manipulation isn’t directly possible running HAProxy in the lower L4 mode, but we’d still like
our backends sitting behind the load-balancer edge to record true client connections and IP addresses for
logging, monitoring and security purposes.

● Use cases on RDS; Dynamic black-hole of abusive SSH clients.
● Log shipping for later analysis.
● Collect login and traffic metrics for visualization.

Solution is to use the Linux kernel tproxy module and HAProxy compiled with tproxy support;
● IPTables pre-routing intercepts traffic, marks it and diverts to a policy routing table to the

loopback
● HAProxy collects marked traffic, spoofs client IP to backends, and handles return traffic as

backend gateway.

Finally, as in OpenStack proper, the KeepaliveD Linux implementation of VRRP provides an
active-passive pair level of high-availability for the front-end proxies, where a service IP floats over the
pair.

Generic L4 TProxy Stack

Generic L4 TProxy Stack

Thank You

Research Computing Platforms @ UIS

Team Lead: Wojciech Turek
Team: Alasdair King

Joe Stankiewicz
Matt Raso-Barnett
Paul Browne

Questions ?

OpenStack Hardware

OpenStack Distro: Cinder Storage:
Red Hat OSP8 (Liberty)Small Ceph pool (64TB)

NexentaStor iSCSI (1PB)

Type No. Specification

Controller Node 3 Dell R630
Dual Xeon E5-2643v3 3.4GhZ, 6 core
128GB RAM
2.4TB local SSD
50GbE Mellanox ConnectX-4 LX
10GbE Intel
1GbE Intel

Compute Node 80 Dell C6320
Dual Xeon E5-2680v3 2.5GhZ, 12 core
256GB RAM
1.6TB local SSD
50GbE ConnectX-4 LX
10GbE Intel
1GbE Intel

Network 5

5

6

Mellanox Spectrum SN2700
32x 100GbE ports, split 2x50GbE

Mellanox Spectrum SN2410
48x 10GbE ports + 8x 100GbE uplink

Dell N2048 PowerConnect
48x 1GbE ports

HA/DR site
(Soulsby)

West Cambridge
Data Centre (WCDC)

OpenStack Networking

NIC Hardware:
● 50GbE Mellanox ConnectX4-LX: Storage networks, Tenant networks

(VLAN + VXLAN)
● 10GbE Network: Data Centre Provider and External VLANs
● 1GbE Network: Hardware provisioning, IPMI and

management/monitoring

OpenStack Compute and Control Plane Networking

Tenant Network Isolation:
● Limit of 4096 VLAN IDs
● Prefer these for “provider”/data centre VLANs

made directly available to hypervisors.

● Use VXLAN encap. for most tenant networks
● Some issues were seen with VXLAN UDP offloads,

affecting achievable B/W
● Fixed with RHEL 7.3 kernel backports
● VXLAN network identifier is 24 bit

=> 16 million VNIDs

North-South Neutron Traffic

HA Neutron L3 routing spreads routing agents
across controllers rather than to compute.

L3 agents exist, namespaced for isolation, on the
controllers and handle NAT’ed traffic to tenant
networks from one or more external networks.

L3 agents fail-over on failure, via Linux VRRP

Distributed Virtual Routing on computes is
possible, but requires each compute node be
exposed on the external network(s).

OpenVSwitch implementation uses successive
OVS bridges and finally a Linux bridge leading to
the instance vNIC.

Instead of NAT through the controllers, we can
distribute the CUDN as another provider
network to the compute node and instance.

