Research Storage 2019 Update

Matt Rásó-Barnett Research Computing Platforms October 2019

What do we offer? (HPC Cluster Customer View)

- High Performance
- Large
- Scalable under parallel IO
- 1 copy on disk
- No Backup
- *Active* data here

Data
Accelerator [
(DAC)

~500TiB NVMe Lustre Research Data Store (RDS)

~ 12PiB Lustre

- Reasonably Fast
- Small
- Non-scalable under parallel IO
- 2 copies on disk
- Backed up
- All *Code* here

?/

NFS /home

~1PiB ZFS

- Slow**, Very High Latency
- Large
- Non-scalable under parallel IO
- 2 copies on tape
- Not backed up
- *Inactive* data here

Research Cold Store (RCS)

~10PiB Tape

Performance Tier

Resilience Tier

Archive Tier
Two Copies on Tape

Data Accelerator (DAC)

What is it?

- All-Flash Storage service, designed for maximum performance for HPC jobs
- Presented as 'Burst-Buffer'-style storage area for CSD3 Cluster
 - 500 TiB Flash
 - Schedulable
 - Exclusive access to the storage during your job
 - Closer to providing guaranteed level of performance
 - No persistency beyond length of job* (or beyond scheduled time-period)
 - Stage-in and stage-out from larger bulk parallel filesystem (RDS)

Why is this useful?

- Economics of flash can only buy so much!
- Where to put it? How to best use it?
 - Salami-slicing it in the same shared model of RDS would not provide enough
 - Shared-scratch with purging still suffers from neighbor effects
 - Need to trim those SSDs sometime too
- DAC attempts to take the 'buffer' approach as pioneered in Cray DataWarp™, DDN IME™
- Ideal for:
 - Applications with large checkpointing bandwidth needs
 - Applications with heavily random IO patterns, or IOPS intensive
 - Metadata-intensive applications

Hardware Platform

- ~500 TiB of NVMe Flash
- 24x Dell R740xd Servers

Each Server contains:

- 12x Intel SSD P4600 1.4TiB NVMe per server
- 2x Intel Omnipath HFIs @100Gbps per server
- 2x Intel Xeon Gold 6142 CPU 32C @2.60GHz
- ➤ 192GiB DDR4

How we use it - Lustre Filesystems-on-demand

DAC Software Project

<u>https://github.com/RSE-Cambridge/data-acc</u>

- Open-source. Developed in-house in collaboration with StackHPC (<u>stackhpc.com</u>)
- Repo contains installation instructions, as well as quickstart demo environments deployable with Docker or Openstack
- Core code written in Golang, along with Ansible to do Lustre filesystem creation/deletion
- Contributions/Feedback welcome!

Peak Performance - Flash is Fast

Bandwidth Scaling across 24 DAC server system

Some Headline Numbers:

- Best-case bandwidth (aligned, large streaming, file-per-process):
 - ➤ 530 GiB/s Read
 - > 350 GiB/s Write
- Best-case metadata:
 - ➤ 1.9M file creates per second
 - > 1.2M file deletes per second
- 'find' lookups (stat)
 - ➤ 2.2M IOPS
- Worst-case bandwidth (unaligned, small IO, single shared-file)
 - 80 GiB/s Read
 - > 50 GiB/s Write

ISC'19 IO500 Results

Cambridge DAC took #1 Position in this HPC IO Benchmark Competition https://www.vi4io.org/io500/list/19-06/start

#	information							io500		
	institution	system	storage vendor	filesystem type	client nodes	client total procs	data	score	bw GiB/s	md kIOP/s
1	University of Cambridge	Data Accelerator	Dell EMC	Lustre	512	8192	zip	620.69	162.05	2377.44
2	Oak Ridge National Laboratory	Summit	IBM	Spectrum Scale	504	1008	zip	330.56	88.20	1238.93
3	JCAHPC	Oakforest- PACS	DDN	IME	2048	2048	zip	275.65	492.06	154.41
4	Korea Institute of Science and Technology Information (KISTI)	NURION	DDN	IME	2048	4096	zip	156.91	554.23	44.43
5	DDN	IME140	DDN	IME	17	272	zip	112.67	90.34	140.52
6	DDN Colorado	DDN IME140	DDN	IME	10	160	zip	109.42	75.79	157.96
7	DDN	AI400	DDN	Lustre	10	160	zip	104.34	19.65	553.98
8	CSIRO	bracewell	Dell/ThinkParQ	BeeGFS	26	260	zip	88.26	67.44	115.50
9	KAUST	ShaheenII	Cray	DataWarp	1024	8192	zip	77.37	496.81	12.05
10	University of Cambridge	Data Accelerator	Dell EMC	BeeGFS	184	5888	zip	74.58	58.81	94.57

In development - early-access users before Christmas

- ❖ Aim to start getting early users on the platform before Christmas
- More details to be announced through HPC users mailing list (hpc-user@lists.cam.ac.uk)
- If you have researchers with use-cases that could benefit, or would like to be considered for early-access trial, get in touch at support@hpc.cam.ac.uk