
Revision A

Command Line Scanner for LINUX
(Product Guide – Version 7.0.4)

COPYRIGHT

Copyright © 2024 Musarubra US LLC.

Trellix and FireEye are the trademarks or registered trademarks of Musarubra US LLC, FireEye Security Holdings US LLC and their affiliates in the US and /or other
countries. McAfee is the trademark or registered trademark of McAfee LLC or its subsidiaries in the US and /or other countries. Skyhigh Security is the trademark of
Skyhigh Security LLC and its affiliates in the US and other countries. Other names and brands are the property of these companies or may be claimed as the property
of others.

2 Command Line Scanner for LINUX

Contents

Preface . 5
About this guide . 5

Audience . 5
Conventions . 5
What’s in this guide . 5

Find product documentation . 6

Introducing Command Line Scanner for LINUX . 7
Product features . 7
Getting product information . 7
Contact information . 8

Installing Command Line Scanner for LINUX . 9
About the distributions . 9
Installation requirements . 9

Other recommendations . 9
Installing the software . 10

Troubleshooting during installation . 10
Testing your installation . 11

Troubleshooting when scanning . 11
Removing the program . 12

Using Command Line Scanner for LINUX . 13
Running an on-demand scan . 13

Command-line conventions . 13
General hints and tips . 14

Configuring scans . 14
Example 1 . 15
Example 2 . 15

Scheduling scans . 16
Examples . 16

Handling viruses . 16
Example 1 . 16
Example 2 . 17
Example 3 . 17
Example 4 . 17

Using heuristic analysis . 17
Handling an infected file that cannot be cleaned . 17
Producing reports . 18

Example . 18
XML reports . 19

Choosing the options . 19
Scanning options . 20
Response options . 23
General options . 24
Options in alphabetic order . 24

Exit codes . 27

Preventing Infections . 29
Detecting new and unidentified viruses . 29

Why do I need new DAT files? . 29

Contents

Command Line Scanner for LINUX 3

Updating your DAT files . 29

Schema for the XML reports . 35

Index 39

Contents

4 Command Line Scanner for LINUX

Preface

About this guide
This information describes the guide's target audience, the typographical conventions and icons used in this guide, and how
the guide is organized.

Audience

Trellix documentation is carefully researched and written for the target audience.

The information in this guide is intended primarily for:

• Administrators — People who implement and enforce the company's security program.

• Users — People who use the computer where the software is running and can access some or all of its features.

Conventions

This guide uses these typographical conventions and icons.

Italic Title of a book, chapter, or topic; a new term; emphasis

Bold Text that is emphasized

Monospace Commands and other text that the user types; a code sample; a displayed message

Narrow Bold Words from the product interface like options, menus, buttons, and dialog boxes

Hypertext blue A link to a topic or to an external website

Note: Extra information to emphasize a point, remind the reader of something, or provide an alternative
method

Tip: Best practice information

Caution: Important advice to protect your computer system, software installation, network, business, or
data

Warning: Critical advice to prevent bodily harm when using a hardware product

What’s in this guide

This guide is organized to help you find the information you need.

This release of Command Line Scanner for LINUX includes the following new features or enhancements:

• Trellix Anti-Malware Scan Engine version 6700

 | Preface

Command Line Scanner for LINUX 5

Find product documentation
On the ServicePortal, you can find information about a released product, including product documentation, technical articles,
and more.

Task

1 Go to the ServicePortal at https://www.trellix.com/en-us/support.html and click the Knowledge Center tab.

2 In the Knowledge Base pane under Content Source, click Product Documentation.

3 Select a product and version, then click Search to display a list of documents.

 | Preface

6 Command Line Scanner for LINUX

https://www.trellix.com/en-us/support.html

Introducing Command Line Scanner for LINUX

Command Line Scanner for LINUX detects and removes viruses on LINUX-based systems. This section describes:

• Product features

• Getting product information

• Contact information

Product features
The scanner runs from a command-line prompt, and provides an alternative to scanners that use a graphical user interface
(GUI). Both types of scanner use the same anti-virus software. The scanner acts as an interface to the powerful scanning engine
— the engine common to all our security products.

Although a few years ago, the LINUX operating system was considered a secure environment against potentially unwanted
software, it is now seeing more occurrences of software specifically written to attack or exploit security holes in LINUX-based
systems. Increasingly, LINUX-based systems interact with Windows-based computers, and although viruses written to attack
Windows-based systems do not directly attack LINUX systems, the LINUX system can unknowingly harbor these viruses, ready
to infect any client that connects to it.

When installed on your LINUX systems, Command Line Scanner for LINUX becomes an effective solution against viruses,
Trojan-horse programs, and other types of potentially unwanted software.

The command-line scanner enables you to search for viruses in any directory or file in your computer on demand — in other
words, at any time. The command-line scanner also features options that can alert you when the scanner detects a virus or that
enable the scanner to take a variety of automatic actions.

When kept up-to-date with the latest virus-definition (dat) files, the scanner is an important part of your network security. We
recommend that you set up a security policy for your network, incorporating as many protective measures as possible.

Getting product information

Unless otherwise noted, product documentation comes as Adobe Acrobat .PDF files, or from the Trellix download site.

• Product Guide — Introduction to the product and its features; detailed instructions for configuring the software;
information on deployment, recurring tasks, and operating procedures.

• Help — Product information in the Help system that is accessed from within the application on its man pages.

• Release Notes — ReadMe. Product information, resolved issues, any known issues, and last-minute additions or changes
to the product or its documentation.

• License Agreement — The Trellix License Agreement booklet that includes all of the license types you can purchase for
your product. The License Agreement presents general terms and conditions for use of the licensed product.

• Contacts — Contact information for Trellix services and resources: technical support, customer service, Security
Headquarters (Trellix Advanced Research Center), beta program, and training.

See also
Contact information on page 8

1 | Introducing Command Line Scanner for LINUX

Command Line Scanner for LINUX 7

Contact information

Threat Center: Trellix Advanced
Research Center

Trellix Advanced Research Center Threat Library
https://www.trellix.com/en-us/advanced-research-center.html

Support Notification Service (SNS

https://www.trellix.com/en-us/contact-us/sns-preferences.html

Download Site https://www.trellix.com/en-us/downloads.html
Product Upgrades (Valid grant number required)

Security Updates (DATs, engine)

HotFix and Patch Releases
• For Security Vulnerabilities (Available to the public)

• For Products (ServicePortal account and valid grant number required)

Product Evaluation

Trellix Beta Program

Technical Support https://www.trellix.com/en-us/support.html
KnowledgeBase Search

https://supportm.trellix.com/webcenter/portal/supportportal/pages_knowledgecenter

Trellix Technical Support ServicePortal (Logon credentials required)

https://supportm.trellix.com/

Customer Service Web
https://www.trellix.com/en-us/contact-us.html

Professional Services Enterprise: https://www.trellix.com/en-us/index.html

1 | Introducing Command Line Scanner for LINUX

8 Command Line Scanner for LINUX

https://www.trellix.com/en-us/advanced-research-center.html
https://www.trellix.com/en-us/contact-us/sns-preferences.html
https://www.trellix.com/en-us/downloads.html
https://www.trellix.com/en-us/support.html
https://supportm.trellix.com/webcenter/portal/supportportal/pages_knowledgecenter
https://supportm.trellix.com/
https://www.trellix.com/en-us/contact-us.html
https://www.trellix.com/en-us/index.html

Installing Command Line Scanner for LINUX

We distribute the Command Line Scanner for LINUX software as an archived file that you can download from our website or
from other electronic services.

Review the Installation requirements in this chapter to verify that the software will run on your system, then follow the
installation steps.

About the distributions
Command Line Scanner for LINUX software comes in several distribution versions, one for each supported operating system.

• Linux for Intel 32-bit distributions shipping with version 3.x, 4.x or 5.x production kernels (with GLIBC version 2.19+) with
both libstdc++.so.5 (for engine) and libstdc++.so.6 installed.

• Linux for Intel 64-bit distributions shipping with version 2.6, 3.x, 4.x or 5.x production kernels, with libstdc++.so.6 installed.

For current information about the distribution versions, refer to the Release Notes.

Installation requirements
To install and run the software, you need the following:

• The correct version of the LINUX distribution that you require, installed and running correctly on the target computer.

• At least 512 MB of free hard disk space

• At least an additional 512 MB of free hard disk space reserved for temporary files

• At least 512 MB of RAM for scanning operations (1024 MB recommended)

• At least 1024 MB of RAM for updating operations

See also
About the distributions on page 9

Other recommendations

• To install the software and perform on-demand scan operations of your file system, we recommend that you have root
account permissions.

• To take full advantage of the regular updates to DAT files from our website, you need an Internet connection, either through
your local area network, or via a high-speed modem and an Internet Service Provider.

2 | Installing Command Line Scanner for LINUX

Command Line Scanner for LINUX 9

Installing the software
This section shows how to install the software on any distribution. To install a specific distribution, substitute the correct file
name for the distribution file.
To start the installation script:

Task

1 Download the appropriate Command Line Scanner for LINUX software distribution from our website.

2 Copy the distribution file to a directory on your system.

Note

We recommend that you use a separate (possibly a temporary) directory — not the directory where you intend to install the software.

3 Change the directory to that containing the distribution file. Use cd.

4 Type this line at the command prompt to decompress the file:

gunzip distribution-file | tar -xf -
Here, distribution-file is the file you copied in Step 2

5 Type this line at the command prompt to execute the installation script:

./install-uvscan installation-directory

If you do not specify an installation directory, the software is installed in /usr/local/uvscan.

If the installation directory does not exist, the installation script asks whether you want to create it. If you do not create the
installation directory, the installation cannot continue.

6 The installation script asks whether you want to create symbolic links to the executable, the shared library and the man
page. Type Y to create each link, or N to skip the step.

We recommend that you create these links. Otherwise, you will need to set one of the following environment variables to
include the installation directory:

Distribution Variable

Linux LD_LIBRARY_PATH
Linux 64-bit LD_LIBRARY_PATH

Tip

The program also looks in the /usr/lib or /lib directory or the current directory for the shared library.

The installation program copies the program files to your hard disk, then scans your home directory.

See also
Handling viruses on page 16
Troubleshooting during installation on page 10

Troubleshooting during installation

The following table lists the most common error messages returned if the installation fails. The table also suggests a likely
reason for the error and recommends any solutions.

2 | Installing Command Line Scanner for LINUX

10 Command Line Scanner for LINUX

Table 2-1 Error messages

Error Cause or action

Failed to create install_dir Verify that you have permission to create the installation directory.

Cannot write to install_dir Verify that you have permission to write to the installation directory.

The install_dir exists, but is not
a subdirectory

Choose another installation directory.

<file> is missing The file might not exist.

<file> is not correct The file did not install correctly.

Bad string The error is generated by the tr command used by the install-uvscan and
uninstall-uvscan scripts.
For more information, see KB52240.

Testing your installation
After it is installed, the program is ready to scan your computer for infected files. You can run a test to determine that the
program is installed correctly and can properly scan for viruses. The test was developed by the European Institute of Computer
Anti-virus Research (EICAR), a coalition of anti-virus vendors, as a method of testing any anti-virus software installation.

To test your installation:

Task

1 Open a standard text editor, then type the following line:

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Caution

The line must appear as one line in the window of your text editor.

2 Save the file with the name EICAR.COM. The file size will be 68 or 70 bytes.

3 Type the following command to scan the EICAR.COM file:

uvscan -v EICAR.COM
When the program examines this file, it reports finding the EICAR test file, but you will not be able to clean or rename it.

Caution

This file is not a virus — it cannot spread or infect other files, or otherwise harm your computer. Delete the file when you have finished
testing your installation to avoid alarming other users. Please note that products that operate through a graphical user interface do not
return this same EICAR identification message.

4 When you have finished testing your installation, delete the test file to avoid alarming other users.

If the software appears not to be working correctly, check that you have Read permissions on the test file.

Troubleshooting when scanning

The following table lists the most common error messages returned if the uvscan program fails when scanning. The table also
suggests a likely reason for the error and recommends possible solutions.

2 | Installing Command Line Scanner for LINUX

Command Line Scanner for LINUX 11

https://kcm.trellix.com/corporate/index?page=content&id=KB52240

Table 2-2 Program messages

Program message Remedy

Unable to find shared library Set the appropriate environment variable:
For Linux, use LD_LIBRARY_PATH.

Cannot execute: permission denied Check the file permissions. Incorrect file permissions can prevent the program
running correctly. All executables (including the shared libraries) must have read
and execute permissions (r_x), but we recommend rwxr_xr_x
All DAT files must have read permissions.

Missing or invalid DAT files Re-install the DAT files.

The program has been altered; please
replace with a good copy

Re-install from the original media; the program might be infected.

Removing the program
A script is installed at the same time as the Command Line Scanner for LINUX software, which enables you to remove the
product quickly and easily.

To remove the product from your system:

Task

1 Run the script uninstall-uvscan, which is in the Command Line Scanner for LINUX program directory. For example, type
the following command at the command prompt:

/usr/local/uvscan/uninstall-uvscan

2 Delete the script uninstall-uvscan from the program directory to remove the program completely from your system.

If you created your own links to the program and a shared library path when you installed the software, you must remove
those links yourself.

Caution

Removing the software leaves your computer unprotected against threats. Remove the product only when you are sure that you can
upgrade quickly to a new version.

If you are an administrator, ensure that your users cannot accidentally remove their Command Line Scanner for LINUX
software.

2 | Installing Command Line Scanner for LINUX

12 Command Line Scanner for LINUX

Using Command Line Scanner for LINUX

Command Line Scanner for LINUX provides virus scanning from a command line. This section describes how to use its features
and customize the program to meet your needs.

The following features offer optimum protection for your computer and network:

• On-demand scanning options let you start a scan immediately or schedule automatic scans.

• Advanced heuristic analysis detects previously unknown macro viruses and program viruses.

• Updates to virus definition files and to program components ensure that the program has the most current scanning
technology to deal with viruses as they emerge.

Later sections in this guide describe each of these features in detail.

Running an on-demand scan
You can scan any file or directory on your file system from the command line by adding options to the basic command.

Only the Intel-based FreeBSD and Linux distributions of the Command Line Scanner for LINUX program can scan for
boot-sector viruses.

When executed without options, the program displays a brief summary of its options. When executed with only a directory
name specified, the program scans every file in that directory only, and issues a message if any infected files are found. The
options fall into the following main groups:

• Scanning options — determine how and where the scanner looks for infected files.

• Response options — determine how the scanner responds to any infected files.

• General options — determine how the scanner reports its activities.

Each group of options appears in its own table with a description of its function.

See also
Scanning options on page 20
Response options on page 23
General options on page 24
Choosing the options on page 19

Command-line conventions

Use the following conventions to add options to the command line:

• Follow the syntax correctly. The LINUX operating system is case-sensitive.

• Type each option in lower case and separate each with spaces.

• Do not use any option more than once on the command line.

3 | Using Command Line Scanner for LINUX

Command Line Scanner for LINUX 13

• Type single consecutive options as one option. For example, instead of typing this:

-c -r --one-file-system

you can type this:

-cr --one-file-system

• To start the program, at the command prompt, type:

uvscan

(This example assumes that the scanner is available in your search path.)

• To have the program examine a specific file or list of files, add the target directories or files to the command line after
uvscan. You can also create a text file that lists your target files, then add the name of the text file to the command line.

By default, the program examines all files, no matter what their extensions. You can limit your scan by adding only those
extensions you want to examine to the command line after the --extensions option, or you may exclude certain files
from scans with the --exclude option.

See also
Configuring scans on page 14
Choosing the options on page 19

General hints and tips

The following examples assume that the scanner is available in your search path.

• To display a list of all options, with a short description of their features, type the command:

uvscan --help

• To display a list of all the viruses that the program detects, type the command:

uvscan --virus-list

• To display information about the version of the program, type the command:

uvscan --version

• To scan all subdirectories within a directory with maximum security, type the command:

uvscan -r --secure target

• To ensure maximum protection from virus attack, you must regularly update your DAT files.

See also
Preventing Infections on page 3

Configuring scans
Instead of running each scan with all its options directly from the command line, you can keep the options in a separate text
file, known as a task file. In the file, you can specify the actions that the scanner must take when a virus is detected. This allows
you to run complete scans with ease, and at any time; you need only specify the files or directories that you want to scan.

3 | Using Command Line Scanner for LINUX

14 Command Line Scanner for LINUX

To configure a scan:

Task

1 Choose the command options that you want to use.

2 Type the command options into a text editor just as you might on the command line.

3 Save the text as a file — the task file.

4 Type one of these lines at the command prompt:

uvscan --load file target

uvscan --config file target

Here, file is the name of the task file you created, and target is the file or directory you want to scan.

If the scanner detects no virus infections, it displays no output.

The following examples show how you can configure scans using task files. The examples assume the scanner is available in
the search path.

See also
Choosing the options on page 19
Command-line conventions on page 13

Example 1

To scan files in the /usr/docs directory according to the settings you stored in the task file, /usr/local/config1, type the
command:

uvscan --load /usr/local/config1 /usr/docs

The contents of the task file /usr/local/config1, are:

-m /viruses --ignore-compressed --maxfilesize 4

They instruct the scan to move any infected files to /viruses, to ignore any compressed files in the target directory, and to
examine only files smaller than 4mb.

As an alternative, you can arrange the contents of the task file as separate lines:

-m /usr/local/viruses

--ignore-compressed

--maxfilesize 4

Example 2

To scan only files smaller than 4mb and to ignore any compressed files in three separate directories, type the command:

uvscan --load /usr/local/config1 --file mylist

The contents of the task file /usr/local/config1, are:

--ignore-compressed

--maxfilesize 4

The contents of the other file, mylist, are:

3 | Using Command Line Scanner for LINUX

Command Line Scanner for LINUX 15

/usr/local/bin

/tmp

/etc

Scheduling scans
You can use the LINUX cron scheduler to run automated scans. Cron stores the scheduling commands in its crontab files. For
further information about cron and crontab, refer to your LINUX documentation or view the Help text, using the commands,
man cron or man crontab.

Examples

To schedule a scan to run at 18:30 (6:30 p.m.) every weekday, add the following to your crontab file:

30 18 * * 1-5 /usr/local/bin/uvscan

To schedule a scan to run and produce a summary at 11:50 p.m. every Sunday, add the following to your crontab file:

50 23 * * 0 /usr/local/bin/uvscan --summary

To schedule a scan to run on the work directory at 10:15 a.m. every Saturday in accordance with options specified in a
configuration file conf1, add the following to your crontab file:

15 10 * * 6 /usr/local/bin/uvscan --load conf1 /work

To schedule a scan to run at 8:45 a.m. every Monday on the files specified in the file mylist, add the following to your crontab
file:

45 8 * * 1 /usr/local/bin/uvscan --f /usr/local/mylist

Handling viruses
If the scanner discovers a virus while scanning, it returns exit code number 13.

To clean infected files or directories, or move them to a quarantine location on your network, you can configure your scanner
using one or more response options, which are described in Response options.

The following examples show how you can use these options to respond to a virus attack. The examples assume that the
scanner is available in your search path.

See also
Exit codes on page 27
Response options on page 23

Example 1

To scan and clean all files in the /usr/docs directory and all of its subdirectories, type the command:

uvscan -cr /usr/docs

3 | Using Command Line Scanner for LINUX

16 Command Line Scanner for LINUX

Example 2

To scan and clean all files in the /usr/docs directory and its subdirectories, but ignore any other file systems that are
mounted, type the command:

uvscan -cr --one-file-system /usr/docs

Example 3

To scan all files except compressed files in the /usr/docs directory and its subdirectories, and to move any infected files to /
viruses, type the command:

uvscan -m /viruses -r --ignore-compressed /usr/docs

Example 4

To scan a file with a name prefixed with “-”, type the command:

uvscan -c -v - -myfile

The program scans the named file. It cleans any detected viruses and issues a progress message. This format avoids confusion
between the names of the options and the name of the target. Without the “-” option, the uvscan command appears to have
three options and no target:

uvscan -c -v -myfile

Using heuristic analysis
A scanner uses two techniques to detect viruses: signature matching and heuristic analysis.

A virus signature is simply a binary pattern that is found in a virus-infected file. Using information in the DAT files, the scanner
searches for those patterns. However, this approach cannot detect a new virus because its signature is not yet known,
therefore the scanner uses another technique — heuristic analysis.

Programs, documents or e-mail messages that carry a virus often have distinctive features. They might attempt unprompted
modification of files, invoke mail clients, or use other means to replicate themselves. The scanner analyzes the program code to
detect these kinds of computer instructions. The scanner also searches for legitimate non-virus-like behavior, such as
prompting the user before taking action, and thereby avoids raising false alarms.

In an attempt to avoid being detected, some viruses are encrypted. Each computer instruction is simply a binary number, but
the computer does not use all the possible numbers. By searching for unexpected numbers inside a program file, the scanner
can detect an encrypted virus. By using these two techniques, the scanner can detect both known viruses and many new
viruses and variants. Options that use heuristic analysis include ---analyze, --manalyze, --panalyze.

See also
Scanning options on page 20

Handling an infected file that cannot be cleaned

If the scanner cannot clean an infected file, it renames the file to prevent its use. When a file is renamed, only the file extension
(typically three letters) is changed. The following table shows the method of renaming.

3 | Using Command Line Scanner for LINUX

Command Line Scanner for LINUX 17

Table 3-1 Renaming infected files

Original Renamed Description

Not v?? v?? File extensions that do not start with v are renamed with v as the initial letter of the file extension. For
example, myfile.doc becomes myfile.voc.

v?? vir File extensions that start with v are renamed as .vir. For example, myfile.vbs becomes myfile.vir.

vir,
v01-v99

These files are recognized as already infected, and are not renamed again.

<blank> vir Files with no extensions are given the extension, .vir.

For example, if an infected file called bad.com is found, the scanner attempts to rename the file to bad.vom. However, if a file
of that name already exists in the directory, the scanner attempts to rename the file to bad.vir, bad.v01, bad.v02, and so
on.

For file extensions with more than three letters, the name is usually not truncated. For example, notepad.class becomes
notepad.vlass. However, an infected file called water.vapor becomes water.vir.

Producing reports
The program might take some time to complete a scan, particularly over many directories and files. However, the scanner can
keep you informed of its progress, any viruses it finds, and its response to them.

The program displays this information on your screen if you add the --summary or --verbose option to the command line.

The --verbose option tells you which files the program is examining.

When the scan finishes, the --summary option identifies the following:

• How many files were scanned.

• How many files were cleaned.

• How many files were not scanned.

• How many infected files were found.

See also
Response options on page 23

Example

In the report below, both the --summary and --verbose options were used for scanning files in the /usr/data directory.

$ uvscan --summary --verbose /usr/data
Scanning /usr/data/*
Scanning file /usr/data/command.com
Scanning file /usr/data/grep.com
Summary report on /usr/data/*
File(s)
 Total files: 2
 Clean: 2
 Not scanned: 0
 Possibly Infected: 0

To determine the time taken for the scan, you may use the LINUX time command.

3 | Using Command Line Scanner for LINUX

18 Command Line Scanner for LINUX

XML reports

You can generate an XML format report using the XMLPATH switch. For example, run the following command from the install
directory:

uvscan . --XMLPATH=report.xml --RPTALL

This will generate a file called report.xml with the following content.

<?xml version="1.0" encoding="utf-8"?>
<!-- Scan Results -->
<uvscan>
<Preamble>
<Product_name value="Trellix Command Line Scanner for Linux32" />
<Version value="6.0.4.564" />
<License_info value="(408) 988-3832 LICENSED COPY - May 09 2013" />
<AV_Engine_version value="5600.1067" />
<Dat_set_version value="7057" />
</Preamble>
<Date_Time value="2013-May-09 13:38:16" />
<Options value=". --XMLPATH=report.xml --RPTALL " />
<File name="/usr/local/uvscan/avvclean.dat" status="ok" />
<File name="/usr/local/uvscan/avvnames.dat" status="ok" />
<File name="/usr/local/uvscan/avvscan.dat" status="ok" />
<File name="/usr/local/uvscan/config.dat" status="ok" />
<File name="/usr/local/uvscan/liblnxfv.so.4" status="ok" />
<File name="/usr/local/uvscan/report.xml" status="ok" />
<File name="/usr/local/uvscan/runtime.dat" status="ok" />
<File name="/usr/local/uvscan/uvscan" status="ok" />
<File name="/usr/local/uvscan/vcl604upg.pdf" status="ok" />
<summary On-Path="/usr/local/uvscan/" Total-files="14" Clean="10" Not-Scanned="4" Possibly-Infected="0" />
<Time value="00:00.01" />
</uvscan>

See also
Schema for the XML reports on page 4

Choosing the options
The following sections describe the options you can use to target your scan:

• Scanning options.

• Response options.

• General options.

• Options in alphabetic order.

The descriptions use the following conventions to identify the options or required parameters:

• Short versions of each command option appear after a single dash (-).

• Long versions of each command option, if any, appear after two dashes (--).

• Variables, such as file names or paths, appear in italics within brackets (< >).

See also
Scanning options on page 20
Response options on page 23
General options on page 24
Options in alphabetic order on page 24
Command-line conventions on page 13

3 | Using Command Line Scanner for LINUX

Command Line Scanner for LINUX 19

Scanning options

Scanning options describe how and where each scan looks for infected files. You can use a combination of these options to
customize the scan to suit your needs.

Table 3-2 Scanning options

Option Description

--afc <size> Specify the file cache size.
By default, the cache size is 12MB. A larger cache size can improve scanning performance in
some cases, unless the computer has low memory. The range of sizes allowed is 8mb to
512mb. Specify the size in megabytes. For example, --afc 64 specifies 64MB of cache.

--allole Check every file for OLE objects.

--analyze
--analyse

Use heuristic analysis to find possible new viruses in clean files.
This step occurs after the program has checked the file for other viruses.

For macro viruses only, use --manalyze.

For program viruses only, use --panalyze.

--ascii Displays filenames as ASCII text.

--atime-preserve
--p

--plad

Preserve the last-accessed time and date for files that are scanned.
Some backup software archives only changed files, and determines this information from each
file’s last-accessed date (or ‘a-time’). Normally, scanning changes that date. This option will
preserve the date, enabling the backup software to work as intended. Sometimes when this
option is used, the file date is not preserved; if a file contains a virus, or the scan was started
by a user who does not own the file, the file date is changed.

--config <file> un the options specified in <file>.
You cannot nest configuration files within other configuration files.

--d <directory>
--dat <directory>

--data-directory <directory>

Specify the location of the DAT files — avvscan.dat, avvnames.dat, and avvclean.dat.
If you do not use this option in the command line, the program looks in the same directory
from where it was executed.

If it cannot find these data files, the program issues exit code 6.

--decompress Decompress DAT files after an update.

--exclude <file> Exclude the directories or files from the scan as specified in <file>.
List the complete path to each directory or file on its own line. You may use wildcards, * and ?.

--e
--exit-on-error

Quit and display an error message if an error occurs.
The error message indicates the severity of the error.

--extensions
<EXT1[,EXT2,...]>

Examine files that have the specified extensions.
You can specify as many extensions as you want. Separate each with a comma, but without a
space. If you choose this option, the program scans only susceptible files, files with execute
permissions, and those you specify here.

To see the list of susceptible files, use the --extlist option.

3 | Using Command Line Scanner for LINUX

20 Command Line Scanner for LINUX

Table 3-2 Scanning options (continued)

Option Description

--extra <file> Specify the full path and file name of any extra.dat file.
If you do not specify this option in the command line, the program looks in the same directory
from where it was executed.

If it cannot find this file, the program issues exit code 6.

--fam Find all macros, not just macros suspected of being infected.
The scanner treats any macro as a possible virus and reports that the file contains macros.
However, the macros are not removed. If you suspect that you have an infection in a file, you
can remove all macros from the file using the --fam and --cleandocall or --dam options (listed
under response options) together, although you should only do this with caution.

--f <file>
--file <file>

Scan the directories or files as specified in <file>.

--floppya
--floppyb

Scan the boot sector of the disk in drive A or B.
This option is for Intel-based Linux systems only.

--hidemd5 This option allows the display of MD5 checksum of infected files to be hidden, if required.

--ignore-compressed
--nocomp

Ignore compressed executables created with file-compression programs.
Although this option reduces the scanning time, it increases the threat because these file
types are not scanned.

--ignore-links Do not resolve any symbolic links and do not scan the link targets.
Normally, the program follows each symbolic link and scans the linked file.

--jsonpath <filename> Create JSON report.

--load <file> See --config option.

--mailbox Scan plain-text mailboxes.
These include Eudora, PINE, and Netscape. Most mailboxes will be in MIME format, and
therefore the --mime option is also required.

This option does not clean or rename infected mail items; you must first extract them from
the mailbox.

--manalyze
--manalyse

--macro-heuristics

Use heuristic analysis to identify potential macro viruses.

(In Microsoft Word, you can automate a task by using a macro - a group of Word commands
that run as a single command.)

This is a subset of --analyze.

--maxfilesize <size> Examine only those files smaller than the specified size.

Specify the file size in megabytes. For example, maxfilesize 5 means scan only files that are
smaller than 5MB.

--memsize Set maximum size of file that will be cached in memory for scanning, in Kb.

--mime Scan MIME-encoded files.
This type of file is not scanned by default.

--noboot Do not scan the boot sector.

3 | Using Command Line Scanner for LINUX

Command Line Scanner for LINUX 21

Table 3-2 Scanning options (continued)

Option Description

--nodecrypt Do not decrypt Microsoft Office compound documents that are password-protected.
By default, macros inside password-protected compound documents are scanned by
employing password cracking techniques. If, for reasons of security, you do not require these
techniques, use this option. Password cracking does not render the file readable.

--nocomp See ignore-compressed.

--nodoc Do not scan Microsoft Office document files.
This includes Microsoft Office documents, OLE2, CorelDraw, PowerPoint, WordPerfect, RTF,
Visio, Adobe PDF 5, Autodesk Autocad 2000, and Corel PhotoPaint 9 files.

--noexpire Do not issue a warning if the DAT files are out of date.

--nojokes Do not scan files that contain HTML, JavaScript, Visual Basic, or Script Component Type
Libraries.
This type of file is normally scanned by default. Stand-alone Javascript and Visual Basic Script
files will still be scanned.

--one-file-system Scan an entire directory tree without scanning mounted file systems, if you use this option in
conjunction with the --sub option.
Normally, the program treats a mount point as a subdirectory and scans that file system. This
option prevents the scan from running in subdirectories that are on a different file system to
the original directory.

--panalyze
--panalyse

Use heuristic analysis to identify potential program viruses.
By default, the program scans only for known viruses. The --panalyze option is a subset
of --analyze.

--program Scan for potentially unwanted applications.

Some widely available applications, such as “password crackers” can be used maliciously or
can pose a security threat.

--quitcontainer Exit the container mid-decoding/reading phase.

--r
--recursive

--sub

Examine any subdirectories in addition to the specified target directory.
By default, the scanner examines only the files within the specified directory.

--secure Examine all files, unzip archive files and use heuristic analysis.
This option activates the --analyze and --unzip options. If the --selected and --extensions
options are in the command line, they are ignored.

--showcomp Report any files that are packaged.

--showencrypted Display encrypted documents.
This switch retains the 5800 reporting behavior while scanning encrypted MS Office and PDF
documents (without this parameter, the 5900 engine by default reverts to 5700 reporting
behavior). The reporting of encrypted files is performed by using this parameter as these files
are not reported by default.

--s
--selected

Look for viruses in any file that has execute permissions, and in all files that are susceptible to
virus infection.
By default, all files are scanned. By scanning only files that are susceptible to virus infection,
the program can scan a directory faster.

To see the list of susceptible files, use the --extlist option.

3 | Using Command Line Scanner for LINUX

22 Command Line Scanner for LINUX

Table 3-2 Scanning options (continued)

Option Description

--sub See -r.

--threads <nThreads> Scan multithreaded with specified number of threads.

--timeout <seconds> Set the maximum time to scan any one file.

--unzip Scan inside archive files, such as those saved in ZIP, LHA, PKarc, ARJ, TAR, CHM, and RAR
formats.
If used with --clean, this option attempts to clean non-compressed files inside .ZIP files only.
No other archive formats can be cleaned.

The program cannot clean infected files found within any other archive format; you must first
extract them manually from the archive file.

--xmlpath <filename> Create XML report

See also
Using heuristic analysis on page 17
Configuring scans on page 14
Scheduling scans on page 16
Exit codes on page 27
General options on page 24
Response options on page 23

Response options

Response options determine how your scanner responds to an infection. You can use a combination of these options to
customize the scan. None of the options in Table 3-3 occur automatically. To activate each option, specify it in the command
line.

Table 3-3 Response options

Option Definition

--c
--clean

Automatically remove any viruses from infected files.
By default, the program states only that infections were found but does not try to clean the infected file.
If the program cannot clean the file, it displays a warning message. If you use this option, repeat the
scan to ensure that there are no more infections.

--cleandocall
--dam

Delete all macros in a file if an infected macro is found.
If you suspect that a file is infected, you can choose to remove all macros from the file to prevent any
exposure to a virus. To pre-emptively delete all macros in a file, use this option with --fam (listed under
scanning options), although you should do this with caution. If you use these two options together, all
found macros are deleted, regardless of the presence of an infection.

--delete Automatically delete any infected files that are found.

--m <directory>
--move <directory>

Move any infected files to a quarantine location as specified.
When the program moves an infected file, it replicates the full directory path of the infected file inside
the quarantine directory so you can determine the original location of the infected file.

If you use this option with --clean, the program copies the infected files to a quarantine location and
tries to clean the original. If the program cannot clean the original, it deletes the file.

--norename Do not rename an infected file that cannot be cleaned.

3 | Using Command Line Scanner for LINUX

Command Line Scanner for LINUX 23

See also
Scanning options on page 20
Handling an infected file that cannot be cleaned on page 17

General options

General options provide help or give extra information about the scan. You may use a combination of these options to
customize the scan. None of the options in Table 3-4 occur automatically. To activate each option, specify it as part of the
command line.

Table 3-4 General options

Option Definition

--extlist Display a list of all file extensions that are susceptible to infection.
In other words, those file extensions that are scanned when --selected is set.

--h
--help

List the most commonly used options, with a short description.
For a full description, use man uvscan.

--html <FILENAME> Create a file containing the results in HTML format.

--summary Produce a summary of the scan.
This includes the following:
• How many files were examined.

• How many infected files were found.

• How many viruses were removed from infected files.

--v
--verbose

Display a progress summary during the scan.

--version Display the scanner’s version number.

--virus-list Display the name of each virus that the scanner can detect.
This option produces a long list, which is best viewed from a text file. To do this, redirect the output to a
file for viewing.

See also
Producing reports on page 18
Contact information on page 8

Options in alphabetic order

For convenience, the options are repeated in this section in alphabetic order. For fuller descriptions, see the previous sections.

Table 3-5 Option definitions

Option Definition

--afc <size> Specify the file cache size.

--allole Check every file for OLE objects.

3 | Using Command Line Scanner for LINUX

24 Command Line Scanner for LINUX

Table 3-5 Option definitions (continued)

Option Definition

--analyse Same as --analyze.

--analyze Use heuristic analysis to find possible new viruses in clean files.

--ascii Displays filenames as ASCII text.

--atime-preserve Preserve the last-accessed time and date for files that are scanned.

--c Same as --clean.

--clean Automatically remove any viruses from infected files.

--cleandocall Same as --dam.

--config <file> Run the options specified in <file>.

--d <directory> Same as --dat <directory>.

--dam Delete all macros in a file if an infected macro is found.

--dat <directory> Specify the location of the DAT files - avvscan.dat, avvnames.dat, and avvclean.dat.

--data-directory <directory> Same as --dat <directory>.

--decompress Decompress DAT files after an update.

--delete Automatically delete any infected files that are found.

--e Same as --exit-on-error.

--exclude <file> Exclude the directories or files from the scan as specified in <file>.

--exit-on-error Quit and display an error message if an error occurs.

--extensions <EXT1[,EXT2,...]> Examine files that have the specified extensions.

--extlist Display a list of all file extensions that are susceptible to infection.

--extra <file> Specify the full path and file name of any extra.dat file.

--f <file> Same as --file <file>.

--fam Find all macros, not just macros suspected of being infected.

--file <file> Scan the directories or files as specified in <file>.

--floppya --floppyb Scan the boot sector of the disk in drive A or B.

--h Same as --help.

--help List the most commonly used options, with a short description.

--html <FILENAME> Create a file containing the results in HTML format.

--ignore-compressed Ignore compressed files.

--ignore-links Do not resolve any symbolic links and do not scan the link targets.

--jsonpath <filename> Create JSON report.

--load <file> Same as --config <file>.

--m <directory> Same as --move <directory>.

--macro-heuristics Same as --manalyze.

3 | Using Command Line Scanner for LINUX

Command Line Scanner for LINUX 25

Table 3-5 Option definitions (continued)

Option Definition

--mailbox Scan plain-text mailboxes.

--manalyse Same as --manalyze.

--manalyze Use heuristic analysis to identify potential macro viruses.

--maxfilesize <size> Examine only those files smaller than the specified size.

--memsize Set maximum size of file that will be cached in memory for scanning, in Kb.

--mime Scan MIME-encoded files.

--move <directory> Move any infected files to a quarantine location as specified.

--noboot Do not scan the boot sector.

--nocomp Same as --ignore-compressed.

--nodecrypt Do not decrypt Microsoft Office compound documents that are password-protected.

--nodoc Do not scan Microsoft Office document files.

--noexpire Do not issue a warning if the DAT files are out of date.

--nojokes Do not report any joke programs.

--norename Do not rename an infected file that cannot be cleaned.

--noscript Do not scan files that contain HTML, JavaScript, Visual Basic, or Script Component Type
Libraries.

--one-file-system Scan an entire directory tree without scanning mounted file systems, if you use this option in
conjunction with the --sub option.

--p Same as --atime-preserve.

--panalyse Same as --panalyze.

--panalyze Use heuristic analysis to identify potential program viruses.

--plad Same as --atime-preserve.

--program Scan for potentially unwanted applications.

--quitcontainer Exit the container mid-decoding/reading phase.

--r Same as --sub.

--recursive Same as --sub.

--s Same as --selected.

--secure Examine all files, unzip archive files and use heuristic analysis.

--selected Look for viruses in any file that has execute permissions, and in all files that are susceptible to
virus infection.

--showcomp Report any files that are packaged.

--showencrypted Display encrypted documents.

--sub Examine any subdirectories in addition to the specified target directory.

--summary Produce a summary of the scan.

--threads <nThreads> Scan multithreaded with specified number of threads.

3 | Using Command Line Scanner for LINUX

26 Command Line Scanner for LINUX

Table 3-5 Option definitions (continued)

Option Definition

--timeout <seconds> Set the maximum time to scan any one file.

--unzip Scan inside archive files, such as those saved in ZIP, LHA, PKarc, ARJ, TAR, CHM, and RAR
formats.

--v Same as --verbose.

--verbose Display a progress summary during the scan.

--version Display the scanner's version number.

--virus-list Display the name of each virus that the scanner can detect.

--xmlpath <filename> Create XML report.

See also
Scanning options on page 20
Response options on page 23
General options on page 24

Exit codes

When it exits, Command Line Scanner for LINUX returns a code to identify any viruses or problems that were found during a
scan.

Table 3-6 Exit codes

Code Description

0 The scanner found no viruses or other potentially unwanted software and returned no errors.

2 Integrity check on a DAT file failed.

6 A general problem occurred.

8 The scanner could not find a DAT file.

12 The scanner tried to clean a file, and that attempt failed for some reason, and the file is still infected.

13 The scanner found one or more viruses or hostile objects - such as a Trojan-horse program, joke program, or test file.

15 The scanner's self-check failed; it may be infected or damaged.

19 The scanner succeeded in cleaning all infected files.

3 | Using Command Line Scanner for LINUX

Command Line Scanner for LINUX 27

3 | Using Command Line Scanner for LINUX

28 Command Line Scanner for LINUX

Preventing Infections

Command Line Scanner for LINUX is an effective tool for preventing infections, and it is most effective when combined with
regular backups, meaningful password protection, user training, and awareness of threats from viruses and other potentially
unwanted software.

To create a secure system environment and minimize the chance of infection, we recommend that you do the following:

• Install Command Line Scanner for LINUX software and other Trellix anti-virus software where applicable.

• Include a uvscan command in a crontab file.

• Make frequent backups of important files. Even if you have Command Line Scanner for LINUX software to prevent
infections, damage from fire, theft, or vandalism can render your data unrecoverable without a recent backup.

Detecting new and unidentified viruses
To offer the best virus protection possible, we continually update the definition (DAT) files that the Command Line Scanner for
LINUX software uses to detect viruses and other potentially unwanted software. For maximum protection, you should regularly
retrieve these files.

We offer free online DAT file updates for the life of your product, but cannot guarantee they will be compatible with previous
versions. By updating your software to the latest version of the product and updating regularly to the latest DAT files, you
ensure complete virus protection for the term of your software subscription or maintenance plan.

Why do I need new DAT files?

Hundreds of new viruses appear each month. Often, older DAT files cannot detect these new variations. For example, the DAT
files with your original copy of Command Line Scanner for LINUX might not detect a virus that was discovered after you bought
the product.

See also
Contact information on page 8

Updating your DAT files

DAT files are contained in a single compressed file that you can download from the internet.

Task

1 Navigate to this URL: https://update.nai.com/products/commonupdater/current/vscandat1000/dat/0000.

2 Look for a filename that is of the format avvdat-nnnn.zip, where nnnn is the DAT version number.

Tasks
• Using the new DAT files: on page 30

4 | Preventing Infections

Command Line Scanner for LINUX 29

https://update.nai.com/products/commonupdater/current/vscandat1000/dat/0000

Using the new DAT files:

Task

1 Create a download directory.

2 Change to the download directory, and download the new compressed file from the source you have chosen.

3 Type this command to move the DAT files to the directory where your software is installed. Name the file using lower case.

mv *.dat installation-directory

Here, installation-directory is the directory where you installed the software.

Your computer overwrites the old DAT files with the new files. Your anti-virus software will now use the new DAT files to scan
for viruses.

Tip

After an update, run the following command once to decompress the newly downloaded DATs and accelerate the time for subsequent
initializations: uvscan --decompress
This product is not suitable for on-access (single file) scanning.

Sample update script for LINUX

The following script retrieves the most recent DAT files from the Trellix website. It is provided as an example, for you to use and
modify for your environment. It has not been thoroughly tested.

Tip

This script should be executed from the directory where uvscan has been installed. The EMAIL_ADDRESS variable needs to be set to a valid
email address.

#!/bin/sh
Copyright (C) 2022 Musarubra US LLC. All Rights Reserved.
required programs: tar|unzip, wget|curl, sed, awk, echo, cut, ls, printf
#
#==
defaults: do not modify
#==
unset md5checker leave_files debug

#==
change these variables to match your environment
#==
install_dir must be a directory and writable
install_dir=`dirname "$0"`
#
tmp_dir must be a directory and writable
tmp_dir="/tmp/dat-update"
#
optional: this prg is responsible for calculating the md5 for a file
md5checker="md5sum"
#
The package type that the DATs will be downloaded in. Set it to
TAR to get the DATs in a tar archive. Set it to ZIP to get the
DATs in a ZIP archive.
#PACKAGE_TYPE="TAR"
PACKAGE_TYPE="ZIP"

#==
change these variables to set your preferences
#==

4 | Preventing Infections

30 Command Line Scanner for LINUX

set to non-empty to leave downloaded files after the update is done
#leave_files="true"
#
show debug messages (set to non-empty to enable)
#debug=yes
#
set to non-empty to use curl for downloading
otherwise, wget is used by default
#use_curl=yes

#==
these variables are normally best left unmodified
#==
UVSCAN_EXE="uvscan"
UVSCAN_SWITCHES=""

#==
Cleanup()
{
 if [-z "$leave_files"] ; then
 for f in "$avvdat_ini" "$download" ; do
 [-n "$f" -a -e "$f"] && rm -f "$f"
 done
 fi
}
exit_error()
{
 [-n "$1"] && printf "$prgname: ERROR: $1\n"
 Cleanup ; exit 1
}
print_debug()
{
 [-n "$debug"] && printf "$prgname: [debug] $@\n"
}

Function to parse avvdat.ini and return, via stdout, the
contents of a specified section. Requires the avvdat.ini
file to be available on stdin.
$1 - Section name
FindINISection()
{
 unset section_found

 section_name="[$1]"
 while read line ; do
 if ["$line" = "$section_name"] ; then
 section_found="true"
 elif [-n "$section_found"] ; then
 if ["`echo $line | cut -c1`" != "["] ; then
 [-n "$line"] && printf "$line\n"
 else
 unset section_found
 fi
 fi
 done
}

Function to return the DAT version currently installed for
use with the command line scanner
$1 - uvscan exe (including path)
$2 - any extra switches for uvscan
GetCurrentDATVersion()
{
 dirname=`dirname "$1"`
 uvscan_bin=`basename "$1"`

 output=`(cd "$dirname"; "./$uvscan_bin" $2 --version)`
 [$? -eq 0] || return 1

 lversion=`printf "$output\n" | grep "Dat set version:" |
 cut -d' ' -f4`
 printf "${lversion}.0\n"

 return 0

4 | Preventing Infections

Command Line Scanner for LINUX 31

}

Function to download a specified file from update.nai.com
$1 - Path on http server
$2 - name of file to download.
$3 - download type (either bin or ascii)
$4 - download directory
DownloadFile()
{
 ["$3" = "bin" -o "$3" = "ascii"] || return 1
 dtype="$3"

 if [-n "$use_curl"] ; then
 print_debug "using curl to download files..."
 print_debug "downloading file '$2' into '$4'"
 echo " \
 curl http://update.nai.com/$1/$2 \
 -o $4/$2 \
 -s" | sh || return 1
 else
 print_debug "using wget to download files..."
 print_debug "downloading file '$2' into '$4'"
 echo " \
 wget http://update.nai.com/$1/$2 \
 -O $4/$2 \
 -q -r" | sh || return 1
 fi

 return 0
}

Function to check the specified file against its expected size, checksum and MD5 checksum.
$1 - File name (including path)
$2 - expected size
$3 - MD5 Checksum
ValidateFile()
{
 # Check the file size matches what we expect...
 size=`ls -l "$1" | awk ' { print $5 } '`
 [-n "$size" -a "$size" = "$2"] || return 1

 # make md5 check optional. return "success" if there's no support
 [-z "$md5checker" -o "(" ! -x "`which $md5checker 2> /dev/null`" \
 ")"] && return 0

 # Check the md5 checksum...
 md5_csum=`$md5checker "$1" 2>/dev/null | cut -d' ' -f1`
 [-n "$md5_csum" -a "$md5_csum" = "$3"] # return code
}

Function to extract the listed files from the given zip file.
$1 - directory to install to
$2 - downloaded file.
$3 - list of files to install
Update_ZIP()
{
 unset flist
 for file in $3 ; do
 fname=`printf "$file\n" | awk -F':' ' { print $1 } '`
 flist="$flist $fname"
 done

 # Backup any files about to be updated...
 [! -d "backup"] && mkdir backup 2>/dev/null
 [-d "backup"] && cp $flist "backup" 2>/dev/null

 # Update the DAT files.
 print_debug "uncompressing '$2'..."
 unzip -o -d $1 $2 $flist >/dev/null || return 1
 for file in $3 ; do
 fname=`printf "$file\n" | awk -F':' ' { print $1 } '`
 permissions=`printf "$file\n" | awk -F':' ' { print $NF } '`
 chmod "$permissions" "$1/$fname"
 done

4 | Preventing Infections

32 Command Line Scanner for LINUX

 return 0
}

Update_TAR()
{
 unset flist
 for file in $3 ; do
 fname=`printf "$file\n" | awk -F':' ' { print $1 } '`
 flist="$flist $fname"
 done

 # Backup any files about to be updated...
 [! -d "backup"] && mkdir backup 2>/dev/null
 [-d "backup"] && cp $flist backup 2>/dev/null

 # Update the DAT files.
 print_debug "extracting '$2'..."
 cat $2 2>/dev/null | (cd $1 ; tar -xf - $flist >/dev/null 2>/dev/null) || return 1

 for file in $3 ; do
 fname=`printf "$file\n" | awk -F':' ' { print $1 } '`
 permissions=`printf "$file\n" | awk -F':' ' { print $NF } '`
 chmod "$permissions" "$1/$fname"
 done

 return 0
}

globals
prgname=`basename "$0"`
unset perform_update avvdat_ini download

sanity checks
[-d "$tmp_dir"] || mkdir -p "$tmp_dir" 2>/dev/null
[-d "$tmp_dir"] || exit_error "directory '$tmp_dir' does not exist."
[-x "$install_dir/$UVSCAN_EXE"] \
|| exit_error "could not find uvscan executable"

Download avvdat ini to parse the DAT set properties (version, location, etc.)
DownloadFile "products/commonupdater" "avvdat.ini" "ascii" "$tmp_dir" \
|| exit_error "downloading avvdat.ini"
avvdat_ini="$tmp_dir/avvdat.ini"

Did we get avvdat.ini?
[-r "$avvdat_ini"] || exit_error "unable to get avvdat.ini file"

ini_section=AVV-$PACKAGE_TYPE
file_list="avvscan.dat:444 avvnames.dat:444 avvclean.dat:444"

Get the version of the installed DATs...
current_version=`GetCurrentDATVersion "$install_dir/$UVSCAN_EXE" "$UVSCAN_SWITCHES"`
[-n "$current_version"] \
|| exit_error "unable to get currently installed DAT version."
current_major=`echo "$current_version" | cut -d. -f-1`
current_minor=`echo "$current_version" | cut -d. -f2-`

curl and wget transfers text without EOL conversion
converting ascii transfers to *nix EOL in the downloaded INI file
sed -i 's/\r//g' "$avvdat_ini"

parse INI file
INISection=`FindINISection "$ini_section" < $avvdat_ini`
[-n "$INISection"] \
|| exit_error "unable to get section $ini_section from avvdat.ini"

unset major_ver file_name file_path file_size md5
Some INI sections have the MinorVersion field missing.
minor_ver=0 # To work around this, we will initialise it to 0.

Parse the section and keep what we are interested in.
for field in $INISection ; do
 name=`echo "$field" | awk -F'=' ' { print $1 } '`
 value=`echo "$field" | awk -F'=' ' { print $2 } '`

4 | Preventing Infections

Command Line Scanner for LINUX 33

 case $name in
 "DATVersion") major_ver=$value ;; # available: major
 "MinorVersion") minor_ver=$value ;; # available: minor
 "FileName") file_name="$value" ;; # file to download
 "FilePath") file_path=$value ;; # path on FTP server
 "FileSize") file_size=$value ;; # file size
 "MD5") md5=$value ;; # MD5 checksum
 esac
done

sanity check
[-n "$major_ver" -a -n "$minor_ver" -a -n "$file_name" \
-a -n "$file_path" -a -n "$file_size" -a -n "$md5"] \
|| exit_error "avvdat.ini: '[$ini_section]' has incomplete data"

["(" "$current_major" -lt "$major_ver" ")" -o "(" \
"$current_major" -eq "$major_ver" -a \
"$current_minor" -lt "$minor_ver" ")"] && perform_update="yes"

if [-n "$perform_update"] ; then
printf "$prgname: Performing an update ($current_version -> $major_ver.$minor_ver)\n"

BASE_PATH=""
[$PACKAGE_TYPE == "ZIP"] && BASE_PATH="products/commonupdater"

Download the dat files...
DownloadFile "$BASE_PATH$file_path" "$file_name" "bin" "$tmp_dir" \
|| exit_error "downloading '$file_name'"
download="$tmp_dir/$file_name"

Did we get the dat update file?
[-r "$download"] || exit_error "unable to get $file_name file"

ValidateFile "$download" "$file_size" "$md5" \
|| exit_error "DAT update failed - File validation failed"
Update_$PACKAGE_TYPE "$install_dir" "$download" "$file_list" \
|| exit_error "updating DATs from file '$download'"

Check the new version matches the downloaded one...
new_version=`GetCurrentDATVersion "$install_dir/$UVSCAN_EXE" "$UVSCAN_SWITCHES"`
[-n "$new_version"] \
|| exit_error "unable to get newwly installed DAT version."
new_major=`echo "$new_version" | cut -d. -f-1`
new_minor=`echo "$new_version" | cut -d. -f2-`

if ["$new_major" = "$major_ver" -a "$new_minor" = "$minor_ver"]
then printf "$prgname: DAT update succeeded $current_version -> $new_version\n"
else exit_error "DAT update failed - installed version different than expected\n"
fi
else
 printf "$prgname: DAT already up to date ($current_version)\n"
fi

Cleanup ; exit 0

4 | Preventing Infections

34 Command Line Scanner for LINUX

Schema for the XML reports

The formal schema for the XML reports is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!--W3C Schema for the CLS 6.0 XML Report format-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="Scan">
<xs:complexType>
<xs:sequence>
<xs:element ref="Preamble"/>
<xs:element ref="Date_Time"/>
<xs:element ref="Options"/>
<xs:group ref="FileSummary" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="Time"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Preamble">
<xs:complexType>
<xs:sequence>
<xs:element ref="Product_name"/>
<xs:element ref="Version"/>
<xs:element ref="License_info"/>
<xs:element ref="AV_Engine_version"/>
<xs:element ref="Dat_set_version"/>
<xs:element ref="Extra_Dat_Info" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Date_Time">
<xs:complexType>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Options">
<xs:complexType>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Time">
<xs:complexType>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:group name="FileSummary">
<xs:sequence>
<xs:element ref="File" maxOccurs="unbounded" minOccurs="0"/>
<xs:element ref="Summary" maxOccurs="unbounded"/>
</xs:sequence>
</xs:group>
<xs:element name="File">
<xs:complexType>
<xs:attribute name="status" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="virus-name" type="xs:string" use="optional"/>
<xs:attribute name="detection-type" type="xs:string" use="optional"/>
</xs:complexType>
</xs:element>
<xs:element name="Summary">
<xs:complexType>
<xs:attribute name="Total-processes" type="xs:int" use="optional"/>
<xs:attribute name="On-Path" type="xs:string" use="optional"/>
<xs:attribute name="Total-files" type="xs:int" use="optional"/>
<xs:attribute name="Total-Objects" type="xs:int" use="optional"/>
<xs:attribute name="Possibly-Infected" type="xs:int" use="optional"/>
<xs:attribute name="Objects-Possibly-Infected" type="xs:int" use="optional"/>
<xs:attribute name="Not-Scanned" type="xs:int" use="optional"/>

A | Schema for the XML reports

Command Line Scanner for LINUX 35

<xs:attribute name="Clean" type="xs:int" use="optional"/>
<xs:attribute name="Possibly-Infected-MBR" type="xs:int" use="optional"/>
<xs:attribute name="Possibly-Infected-BootSector" type="xs:int" use="optional"/>
<xs:attribute name="Master-Boot-Records" type="xs:int" use="optional"/>
<xs:attribute name="Boot-Sectors" type="xs:int" use="optional"/>
<xs:attribute name="Cleaned" type="xs:int" use="optional"/>
<xs:attribute name="Moved" type="xs:int" use="optional"/>
<xs:attribute name="Deleted" type="xs:int" use="optional"/>
</xs:complexType>
</xs:element>
<xs:element name="Product_name">
<xs:complexType>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Version">
<xs:complexType>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="License_info">
<xs:complexType>
<xs:attribute name="value" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="AV_Engine_version">
<xs:complexType>
<xs:attribute name="value" type="xs:decimal" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Dat_set_version">
<xs:complexType>
<xs:attribute name="value" type="xs:short" use="required"/>
</xs:complexType>
</xs:element>
<xs:element name="Extra_Dat_Info">
<xs:complexType>
<xs:attribute name="Path" type="xs:string" use="required"/>
<xs:attribute name="Additional_Viruses" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

The following table lists the Status attributes and the description for each attribute.

Table A-1 Status attribute description

Status attributes Description

ok The object was scanned ok.

infected Virus-name and detection-type will contain further detail.

corrupted The object is corrupt. This message is usually issued for files within archives; for example, a
corrupted .ZIP file.

error locked The object could not be opened for reading or data could not be read from the object.

password-protected The object is encrypted and the engine does not understand the encryption method. This value is
usually issued for compressed files that are password-protected.

packaged The object is packaged with a packer. The object is neither being reported as infected nor as being
clean.

error bcs-file The object is a Block, FIFO, or character special file. This is only used in LINUX systems.

error outofmemory A memory allocation failed and the scan cannot continue.

error process not running The specified process was not found. This for process objects only.

A | Schema for the XML reports

36 Command Line Scanner for LINUX

Table A-1 Status attribute description (continued)

Status attributes Description

Scan Time Out Scanning stopped due to /TIMEOUT option.

Unknown error Unspecified internal error. This may be returned for errors that are not covered by other XML
status strings.

A | Schema for the XML reports

Command Line Scanner for LINUX 37

A | Schema for the XML reports

38 Command Line Scanner for LINUX

Index

bloodhound (See heuristic analysis) 17

IDE (See DAT files) 29

pattern files (See DAT files) 29

switches (See options 15

virus definitions (See DAT files) 29

A
about this guide 5
access date of files, preserving last 20

ascii switch 20

automatic scan 16

B
backup software 20

boot-sector viruses 13

C
cache sizes, for archives 20

cleaning infected files 23

COM2EXE 20

compressed files, ignore during scans 20

configuration file, option for loading saved 20

configuration options 14

conventions and icons used in this guide 5
conventions, command line 13

cron, UNIX command 16

crontab files, for automatic scans 16

Cryptcom 20

D
DAT file 29

do not show expiration notice 20

updates 29

disk scanning 20

distributions, versions of software 9
documentation

audience for this guide 5
product-specific, finding 6
typographical conventions and icons 5

E
EICAR "virus" for testing installation 11

encrypted files 20

error codes 27

error messages 10

Eudora 20

examples
configuring scans 15

configuring scans 15

consecutive options 13

cron 16

--verbose option [examples : verbose] 18

--summary option [examples: summary] 18

reports 18

scanning and cleaning 17

scanning and cleaning 16

scheduling scans 16

update script for LINUX 30

exit codes 27

exit-on-error, setting for scans 20

extra.dat 20

F
files, list of types scanned 24

G
general options 24

GZIP 20

H
help, online 14, 24

heuristic analysis 20, 23

HTML 20

I
infected files

cannot be cleaned 17

cleaning 23

quarantine 23

renaming 17

installation requirements 9
installation, testing effectiveness of 11

installing VirusScan software 9

Index

Command Line Scanner for LINUX 39

J
JavaScript 20

joke programs 20

L
library paths 10

links, creating to uvscan and shared library 10

list of viruses 24

M
macros 20

delete from files 23

mailboxes
not cleaned 20

plain-text 20

Microsoft Expand 20

Microsoft Word files, do not scan 20

MIME 20

N
Netscape 20

O
on-demand scanning 13

options
alphabetic list o 24

examples 15, 17

examples 15, 16

general 24

report 18

response 16

P
password cracking 20

permissions 9
PINE 20

PKLITE 20

plain-text mailboxes 20

preventing virus infection 29

progress of scan
summary of scan 18

progress summary 24

Q
quarantine, moving infected files to 23

R
recursion 20

removing the software
by hand 12

with the uninstallation script 12

reports 18

response options 16

return values 27

root account 9

S
scan targets, supplying by a file 20

scanning
ARC files 20

boot sector of disk 20

diskette 20

on-demand 13

secure 20

time taken for 18

with maximum security 14

scheduling a scan 16

Script Component Type Libraries 20

secure scanning 20

ServicePortal, finding product documentation 6
shared library path, removing 12

standard input, to set scan targets 20

subdirectories, scanning of 20

summary of scan results, displaying;scan results, displaying 24

syntax, variables in 19

system requirements 9

T
task file 14

technical support, finding product information 6
Teledisk 20

testing your installation 11

Trellix ServicePortal, accessing 6
troubleshooting installation 10

U
updates 13

V
variables, in command line 19

verbose scan reports, setting 24

version number 14, 24

viruses
cleaning infected files 23

list of detected 14

obtaining a list of 24

preventing infections 29

signature 17

Visual Basic 20

W
warning, “-” option 17

what's in this guide 5

Z
zipped files, ignore during scans 20

Index

40 Command Line Scanner for LINUX

0A00

	Contents
	Preface
	About this guide
	Audience
	Conventions
	What’s in this guide

	Find product documentation

	1 Introducing Command Line Scanner for LINUX
	Product features
	Getting product information
	Contact information

	2 Installing Command Line Scanner for LINUX
	About the distributions
	Installation requirements
	Other recommendations

	Installing the software
	Troubleshooting during installation

	Testing your installation
	Troubleshooting when scanning

	Removing the program

	3 Using Command Line Scanner for LINUX
	Running an on-demand scan
	Command-line conventions
	General hints and tips

	Configuring scans
	Example 1
	Example 2

	Scheduling scans
	Examples

	Handling viruses
	Example 1
	Example 2
	Example 3
	Example 4

	Using heuristic analysis
	Handling an infected file that cannot be cleaned
	Producing reports
	Example
	XML reports

	Choosing the options
	Scanning options
	Response options
	General options
	Options in alphabetic order

	Exit codes

	4 Preventing Infections
	Detecting new and unidentified viruses
	Why do I need new DAT files?
	Updating your DAT files
	Using the new DAT files:
	Sample update script for LINUX

	A Schema for the XML reports
	Index
	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

